137 resultados para Lp Extremal Polynomials
Resumo:
The “partition method” or “sub-domain method” consists of expressing the solution of a governing differential equation, partial or ordinary, in terms of functions which satisfy the boundary conditions and setting to zero the error in the differential equation integrated over each of the sub-domains into which the given domain is partitioned. In this paper, the use of this method in eigenvalue problems with particular reference to vibration of plates is investigated. The deflection of the plate is expressed in terms of polynomials satisfying the boundary conditions completely. Setting the integrated error in each of the subdomains to zero results in a set of simultaneous, linear, homogeneous, algebraic equations in the undetermined coefficients of the deflection series. The algebraic eigenvalue problem is then solved for eigenvalues and eigenvectors. Convergence is examined in a few typical cases and is found to be satisfactory. The results obtained are compared with existing results based on other methods and are found to be in very good agreement.
Resumo:
The study deals with the irrigation planning of the Cauvery river basin in peninsular India which is extensively developed in the downstream reaches and has a high potential for development in the upper reaches. A four-reservoir system is modelled on a monthly basis by using a mathematical programming (LP) formulation to find optimum cropping patterns, subject to land, water and downstream release constraints, and applied to the Cauvery basin. Two objectives, maximizing net economic benefits and maximizing irrigated cropped area, considered in the model are analysed in the context of multiobjective planning and the trade-offs discussed.
Resumo:
In this paper a method of solving certain third-order non-linear systems by using themethod of ultraspherical polynomial approximation is proposed. By using the method of variation of parameters the third-order equation is reduced to three partial differential equations. Instead of being averaged over a cycle, the non-linear functions are expanded in ultraspherical polynomials and with only the constant term retained, the equations are solved. The results of the procedure are compared with the numerical solutions obtained on a digital computer. A degenerate third-order system is also considered and results obtained for the above system are compared with numerical results obtained on the digital computer. There is good agreement between the results obtained by the proposed method and the numerical solution obtained on digital computer.
Resumo:
A new method of generating polynomials using microprocessors is proposed. The polynomial is generated as a 16-bit digital word. The algorithm for generating a variety of basic 'building block' functions and its implementation is discussed. A technique for generating a generalized polynomial based on the proposed algorithm is indicated. The performance of the proposed generator is evaluated using a commercially available microprocessor kit.
Crystal growth and characterization of two-leg spin ladder compounds: Sr14Cu24O41 and Sr2Ca12Cu24O41
Resumo:
Single crystals of Sr14−xCaxCu24O41 (x=0 and 12) are grown by the travelling solvent floating zone technique using an image furnace. The grown crystals are characterized for their single crystallinity by the X-ray and Neutron Laue method. The magnetic susceptibility measurements in Sr14Cu24O41 show considerable anisotropy along the main crystallographic axes. Low-temperature specific heat measurement and DC susceptibility measurement in Ca-doped crystal showed antiferromagnetic ordering at 2.8 K at ambient pressure. High-pressure AC susceptibility measurement on Ca-doped crystal showed a sharp superconducting transition at 2 K under 40 kbars. Tc onset reached a maximum value of 9.9 K at 54 kbars. The bulk superconductivity of the sample is confirmed by the high-pressure AC calorimetry with Tc max=9.4 K and TN=5 K at 56 kbars.
Resumo:
The “partition method” or “sub-domain method” consists of expressing the solution of a governing differential equation, partial or ordinary, in terms of functions which satisfy the boundary conditions and setting to zero the error in the differential equation integrated over each of the sub-domains into which the given domain is partitioned. In this paper, the use of this method in eigenvalue problems with particular reference to vibration of plates is investigated. The deflection of the plate is expressed in terms of polynomials satisfying the boundary conditions completely. Setting the integrated error in each of the subdomains to zero results in a set of simultaneous, linear, homogeneous, algebraic equations in the undetermined coefficients of the deflection series. The algebraic eigenvalue problem is then solved for eigenvalues and eigenvectors. Convergence is examined in a few typical cases and is found to be satisfactory. The results obtained are compared with existing results based on other methods and are found to be in very good agreement.
Resumo:
The classical Rayleigh-Ritz method with simple polynomials as admissible functions has been used for obtaining natural frequencies of transversely vibrating polar orthotropic annular plates. The method in conjunction with transformations introduced in the analysis has been found to be quite effective, particularly for large hole sizes. Estimates of natural frequencies corresponding to modes with one as well as two nodal diameters are obtained for the nine combinations of clamped, simply supported and free edge conditions and for various values of rigidity ratio and hole sizes. Based on the variation of eigenvalue parameter with rigidity ratio, the frequencies of these modes as well as those of axisymmetric modes have been expressed by means of simple formulae in terms of rigidity ratio and the frequencies of corresponding modes in the isotropic case. These formulae have been used in determining the fundamental frequencies of orthotropic plates.
Resumo:
Let Wm,p denote the Sobolev space of functions on Image n whose distributional derivatives of order up to m lie in Lp(Image n) for 1 less-than-or-equals, slant p less-than-or-equals, slant ∞. When 1 < p < ∞, it is known that the multipliers on Wm,p are the same as those on Lp. This result is true for p = 1 only if n = 1. For, we prove that the integrable distributions of order less-than-or-equals, slant1 whose first order derivatives are also integrable of order less-than-or-equals, slant1, belong to the class of multipliers on Wm,1 and there are such distributions which are not bounded measures. These distributions are also multipliers on Lp, for 1 < p < ∞. Moreover, they form exactly the multiplier space of a certain Segal algebra. We have also proved that the multipliers on Wm,l are necessarily integrable distributions of order less-than-or-equals, slant1 or less-than-or-equals, slant2 accordingly as m is odd or even. We have obtained the multipliers from L1(Image n) into Wm,p, 1 less-than-or-equals, slant p less-than-or-equals, slant ∞, and the multiplier space of Wm,1 is realised as a dual space of certain continuous functions on Image n which vanish at infinity.
Resumo:
An iterative method of constructing sections of the game surfaces from the players'' extremal trajectory maps is discussed. Barrier sections are presented for aircraft pursuit-evasion at constant altitude, with one aircraft flying at sustained speed and the other varying its speed.
Resumo:
Curved hollow bars of laminated anisotropic construction are used as structural members in many industries. They are used in order to save weight without loss of stiffness in comparison with solid sections. In this paper are presented the details of the development of the stiffness matrices of laminated anisotropic curved hollow bars under line member assumptions for two typical sections, circular and square. They are 16dof elements which make use of one-dimensional first-order Hermite interpolation polynomials for the description of assumed displacement state. Problems for which analytical or other solutions are available are first solved using these elements. Good agreement was found between the results. In order to show the capability of the element, application is made to carbon fibre reinforced plastic layered anisotropic curved hollow bars.
Resumo:
This paper presents finite element analysis of laminated anisotropic beams of bimodulus materials. The finite element has 16 d.o.f. and uses the displacement field in terms of first order Hermite interpolation polynomials. As the neutral axis position may change from point to point along the length of the beam, an iterative procedure is employed to determine the location of zero strain points along the length. Using this element some problems of laminated beams of bimodulus materials are solved for concentrated loads/moments perpendicular and parallel to the layering planes as well as combined loads.
Resumo:
In this paper, the transient response of a third-order non-linear system is obtained by first reducing the given third-order equation to three first-order equations by applying the method of variation of parameters. On the assumption that the variations of amplitude and phase are small, the functions are expanded in ultraspherical polynomials. The expansion is restricted to the constant term. The resulting equations are solved to obtain the response of the given third-order system. A numerical example is considered to illustrate the method. The results show that the agreement between the approximate and digital solution is good thus vindicating the approximation.
Resumo:
In this paper a method to determine the internal and external boundaries of planar workspaces, represented with an ordered set of points, is presented. The sequence of points are grouped and can be interpreted to form a sequence of curves. Three successive curves are used for determining the instantaneous center of rotation for the second one of them. The two extremal points on the curve with respect to the instantaneous center are recognized as singular points. The chronological ordering of these singular points is used to generate the two envelope curves, which are potentially intersecting. Methods have been presented in the paper for the determination of the workspace boundary from the envelope curves. Strategies to deal with the manipulators with joint limits and various degenerate situations have also been discussed. The computational steps being completely geometric, the method does not require the knowledge about the manipulator's kinematics. Hence, it can be used for the workspace of arbitrary planar manipulators. A number of illustrative examples demonstrate the efficacy of the proposed method.
Resumo:
CTRU, a public key cryptosystem was proposed by Gaborit, Ohler and Sole. It is analogue of NTRU, the ring of integers replaced by the ring of polynomials $\mathbb{F}_2[T]$ . It attracted attention as the attacks based on either LLL algorithm or the Chinese Remainder Theorem are avoided on it, which is most common on NTRU. In this paper we presents a polynomial-time algorithm that breaks CTRU for all recommended parameter choices that were derived to make CTRU secure against popov normal form attack. The paper shows if we ascertain the constraints for perfect decryption then either plaintext or private key can be achieved by polynomial time linear algebra attack.
Resumo:
In our earlier work [1], we employed MVDR (minimum variance distortionless response) based spectral estimation instead of modified-linear prediction method [2] in pitch modification. Here, we use the Bauer method of MVDR spectral factorization, leading to a causal inverse filter rather than a noncausal filter setup with MVDR spectral estimation [1]. Further, this is employed to obtain source (or residual) signal from pitch synchronous speech frames. The residual signal is resampled using DCT/IDCT depending on the target pitch scale factor. Finally, forward filters realized from the above factorization are used to get pitch modified speech. The modified speech is evaluated subjectively by 10 listeners and mean opinion scores (MOS) are tabulated. Further, modified bark spectral distortion measure is also computed for objective evaluation of performance. We find that the proposed algorithm performs better compared to time domain pitch synchronous overlap [3] and modified-LP method [2]. A good MOS score is achieved with the proposed algorithm compared to [1] with a causal inverse and forward filter setup.