155 resultados para Logit fixed effect model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose an exactly solvable model for the two-state curve-crossing problem. Our model assumes the coupling to be a delta function. It is used to calculate the effect of curve crossing on the electronic absorption spectrum and the resonance Raman excitation profile.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reflectivity of the bottom of a solar pond increases on account of the accumulation of dirt or the presence of undissolved salt. The effect of the reflection of the solar radiation at the bottom of the pond on the seasonal performance of the pond has been studied using a three zone model. The spectral reflectivity of dirt and common salt were measured in the laboratory and used in the analysis. The results obtained from the analysis show that the presence of dirt at the bottom of the pond does not affect the performance of the pond substantially. On the other hand, the presence of undissolved salt at the bottom of the pond results in substantial deterioration of the pond performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing concentrations of atmospheric CO2 decrease stomatal conductance of plants and thus suppress canopy transpiration. The climate response to this CO2-physiological forcing is investigated using the Community Atmosphere Model version 3.1 coupled to Community Land Model version 3.0. In response to the physiological effect of doubling CO2, simulations show a decrease in canopy transpiration of 8%, a mean warming of 0.1K over the land surface, and negligible changes in the hydrological cycle. These climate responses are much smaller than what were found in previous modeling studies. This is largely a result of unrealistic partitioning of evapotranspiration in our model control simulation with a greatly underestimated contribution from canopy transpiration and overestimated contributions from canopy and soil evaporation. This study highlights the importance of a realistic simulation of the hydrological cycle, especially the individual components of evapotranspiration, in reducing the uncertainty in our estimation of climatic response to CO2-physiological forcing. Citation: Cao, L., G. Bala, K. Caldeira, R. Nemani, and G.Ban-Weiss (2009), Climate response to physiological forcing of carbon dioxide simulated by the coupled Community Atmosphere Model (CAM3.1) and Community Land Model (CLM3.0).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study transport across a point contact separating two line junctions in a nu = 5/2 quantum Hall system. We analyze the effect of inter-edge Coulomb interactions between the chiral bosonic edge modes of the half-filled Landau level (assuming a Pfaffian wave function for the half-filled state) and of the two fully filled Landau levels. In the presence of inter-edge Coulomb interactions between all the six edges participating in the line junction, we show that the stable fixed point corresponds to a point contact that is neither fully opaque nor fully transparent. Remarkably, this fixed point represents a situation where the half-filled level is fully transmitting, while the two filled levels are completely backscattered; hence the fixed point Hall conductance is given by G(H) = 1/2e(2)/h. We predict the non-universal temperature power laws by which the system approaches the stable fixed point from the two unstable fixed points corresponding to the fully connected case (G(H) = 5/2e(2)/h) and the fully disconnected case (G(H) = 0).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A numerical study on columnar-to-equiaxed transition (CET) during directional solidification of binary alloys is presented using a macroscopic solidification model. The position of CET is predicted numerically using a critical cooling rate criterion reported in literature. The macroscopic solidification model takes into account movement of solid phase due to buoyancy, and drag effect on the moving solid phase because of fluid motion. The model is applied to simulate the solidification process for binary alloys (Sn-Pb) and to estimate solidification parameters such as position of the liquidus, velocity of the liquidus isotherm, temperature gradient ahead of the liquidus, and cooling rate at the liquidus. Solidification phenomena under two cooling configurations are studied: one without melt convection and the other involvin thermosolutal convection. The numerically predicted positions of CET compare well with those of experiments reported in literature. Melt convection results in higher cooling rate, higher liquidus isotherm velocities, and stimulation of occurrence of CET in comparison to the nonconvecting case. The movement of solid phase aids further the process of CET. With a fixed solid phase, the occurrence of CET based on the same critical cooling rate is delayed and it occurs at a greater distance from the chill.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic structure of group II-VI semiconductors in the stable wurtzite form is analyzed using state-of-the-art ab initio approaches to extract a simple and chemically transparent tight-binding model. This model can be used to understand the variation in the bandgap with size, for nanoclusters of these compounds. Results complement similar information already available for same systems in the zinc blende structure. A comparison with all available experimental data on quantum size effects in group II-VI semiconductor nanoclusters establishes a remarkable agreement between theory and experiment in both structure types, thereby verifying the predictive ability of our approach. The significant dependence of the quantum size effect on the structure type suggests that the experimental bandgap change at a given size compared to the bulk bandgap, may be used to indicate the structural form of the nanoclusters, particularly in the small size limit, where broadening of diffraction features often make it difficult to unambiguously determine the structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Auto-ignition temperature of polystyrene, poly(vinyl chloride) and carboxy terminated polybutadiene has been measured at various oxygen pressures (1-28 atm) in a high pressure differential thermal analysis assembly at a heating rate of 10°C/min. The exothermic peak appears between 250-350°C in polystyrene and poly(vinyl chloride) and between 150-200°C for carboxy terminated polybutadiene. Ignition appears to be controlled by in situ forma tion and degradation of polymeric peroxides. Inverse dependence of ignition temperature on oxygen pressure is explained by the rate equation which con siders that ignition of a particular sample, of a fixed geometry, occurs when gasification rate reaches a unique critical value.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of deposition of Al +Al2O3 on MRI 153 M Mg alloy processed using a pulsed Nd:YAG laser is presented in this study. A composite coating with metallurgical joint to the substrate was formed. The microstructure and phase constituents were characterized and correlated with the thermal predictions. The laser scan speed had an effect on the average melt depth and the amount of retained and/or reconstituted alumina in the final coating. The coating consisted of alumina particles and highly refined dendrites formed due to the extremely high cooling rates (of the order of 10(8) K/s). The microhardness of the coating was higher and several fold improvement of wear resistance compared to the substrate was observed for the coatings. These microstructural features and physical properties were correlated with the effects predicted by a thermal model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The possible occurrence of a generalized (1-wave) nonequilibrium superconducting state in a multiband system under certain conditions is studied. In the model the radiation field causes interband mixing, and phonons of an appropriate mode (branch) are involved in the interband scattering of electrons of two conduction bands of the system. The strength of the generalized 1-wave pairing interaction between quasiparticles belonging to new radiation admixed states depends on the density (n o/V) of quanta in the system. The coupling constant has the form Xl= AiB(n o/V)/[C + B(no/V)], where A1, B, and C are parameters. For C > B(n0/V), the transition temperature T1* increases with (no/V) in the initial stages. It levels off with higher power. With further increase of power, the transition temperature is expected to drop sharply due to heating effects which cause pair breaking. Estimates show that p-wave (triplet state) pairing may be possible under radiation-induced nonequilibrium situations in appropriate systems. Estimates for lifetimes of various processes quasiparticle, phonon, pair relaxation, and photon-induced mixing) show that the coherence required for the mixing and pairing effects will be maintained for the temperature range and photon density considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of pressure on the conductivity of fast ion conducting AgI-Ag2O-MoO3 glasses has been investigated down to 150 K. The observed variation of conductivities appears to support the application of cluster model to the ionic glasses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple mathematical model depicting blood flow in the capillary is developed with an emphasis on the permeability property of the blood vessel based on Starling's hypothesis. In this study the effect of inertia has been neglected in comparison with the viscosity on the basis of the smallness of the Reynolds number of the flow in the capillary. The capillary blood vessel is approximated by a circular cylindrical tube with a permeable wall. The blood is represented by a couple stress fluid. With such an ideal model the velocity and pressure fields are determined. It is shown that an increase in the couple stress parameter increases the resistance to the flow and thereby decreases the volume rate flow. A comparison of the results with those of the Newtonian case has also been made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report molecular dynamics simulations of bilayers using a united atom model with explicit solvent molecules. The bilayer consists of the single tail cationic surfactant behenyl trimethyl ammonium chloride (BTMAC) with stearyl alcohol (SA) as the cosurfactant. We study the gel to liquid crystalline transitions in the bilayer by varying the amount of water at fixed BTMAC to SA ratio as well as by varying the BTMAC to SA ratio at fixed water content. The bilayer is found to exist in the tilted, Lβ′ phase at low temperatures, and for the compositions investigated in this study, the Lβ′ to Lα melting transition occurred in the temperature range 330−338 K. For the highest BTMAC to SA composition (2:3 molar ratio), a diffuse headgroup−water interface is observed at lower temperatures, and an increase in the d-spacing occurs prior to the melting transition. This pretransition swelling is accompanied by a sharpening in the water density variation across the headgroup region of the bilayer. Signatures of this swelling effect which can be observed in the alkane density distributions, area per headgroup, and membrane thickness are attributed to the hydrophobic effect. At a fixed bilayer composition, the transition temperature (>338 K) from the Lβ′ to Lα transition obtained for the high water content bilayer (80 wt %) is similar to that obtained with low water content (54.3 wt %), confirming that the melting transition at these water contents is dominated by chain melting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analysis of gas absorption accompanied by chemical reaction in the presence of interfacial resistance is presented. The analysis indicates that the effect of interfacial resistance on interphase mass transfer is significantly higher in presence of a reaction compared to the pure absorption case. For fixed values of surface resistance and contact time, the difference between the amount of gas transferred across the interface with and without surface resistance increases as the value of reaction velocity increases. For ranges of contact time and surface resistance of practical relevance, the influence of surface resistance is too high to be neglected while designing gas-liquid contactors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simplified yet analytical approach on few ballistic properties of III-V quantum wire transistor has been presented by considering the band non-parabolicity of the electrons in accordance with Kane's energy band model using the Bohr-Sommerfeld's technique. The confinement of the electrons in the vertical and lateral directions are modeled by an infinite triangular and square well potentials respectively, giving rise to a two dimensional electron confinement. It has been shown that the quantum gate capacitance, the drain currents and the channel conductance in such systems are oscillatory functions of the applied gate and drain voltages at the strong inversion regime. The formation of subbands due to the electrical and structural quantization leads to the discreetness in the characteristics of such 1D ballistic transistors. A comparison has also been sought out between the self-consistent solution of the Poisson's-Schrodinger's equations using numerical techniques and analytical results using Bohr-Sommerfeld's method. The results as derived in this paper for all the energy band models gets simplified to the well known results under certain limiting conditions which forms the mathematical compatibility of our generalized theoretical formalism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A finite element model for the analysis of laminated composite cylindrical shells with through cracks is presented. The analysis takes into account anisotropic elastic behaviour, bending-extensional coupling and transverse shear deformation effects. The proposed finite element model is based on the approach of dividing a cracked configuration into triangular shaped singular elements around the crack tip with adjoining quadrilateral shaped regular elements. The parabolic isoparametric cylindrical shell elements (both singular and regular) used in this model employ independent displacement and rotation interpolation in the shell middle surface. The numerical comparisons show the evidence to the conclusion that the proposed model will yield accurate stress intensity factors from a relatively coarse mesh. Through the analysis of a pressurised fibre composite cylindrical shell with an axial crack, the effect of material orthotropy on the crack tip stress intensity factors is shown to be quite significant.