54 resultados para Learning with noise
Resumo:
An escape mechanism in a bistable system driven by colored noise of large but finite correlation time (tau) is analyzed. It is shown that the fluctuating potential theory [Phys. Rev. A 38, 3749 (1988)] becomes invalid in a region around the inflection points of the bistable potential, resulting in the underestimation of the mean first passage time at finite tau by this theory. It is shown that transitions at large but finite tau are caused by noise spikes, with edges rising and falling exponentially in a time of O(tau). Simulation of the dynamics of the bistable system driven by noise spikes of the above-mentioned nature clearly reveal the physical mechanism behind the transition.
Resumo:
A feedforward network composed of units of teams of parameterized learning automata is considered as a model of a reinforcement teaming system. The internal state vector of each learning automaton is updated using an algorithm consisting of a gradient following term and a random perturbation term. It is shown that the algorithm weakly converges to a solution of the Langevin equation implying that the algorithm globally maximizes an appropriate function. The algorithm is decentralized, and the units do not have any information exchange during updating. Simulation results on common payoff games and pattern recognition problems show that reasonable rates of convergence can be obtained.
Resumo:
One of the main disturbances in EEG signals is EMG artefacts generated by muscle movements. In the paper, the use of a linear phase FIR digital low-pass filter with finite wordlength precision coefficients is proposed, designed using the compensation procedure, to minimise EMG artefacts in contaminated EEG signals. To make the filtering more effective, different structures are used, i.e. cascading, twicing and sharpening (apart from simple low-pass filtering) of the designed FIR filter Modifications are proposed to twicing and sharpening structures to regain the linear phase characteristics that are lost in conventional twicing and sharpening operations. The efficacy of all these transformed filters in minimising EMG artefacts is studied, using SNR improvements as a performance measure for simulated signals. Time plots of the signals are also compared. Studies show that the modified sharpening structure is superior in performance to all other proposed methods. These algorithms have also been applied to real or recorded EMG-contaminated EEG signal. Comparison of time plots, and also the output SNR, show that the proposed modified sharpened structure works better in minimising EMG artefacts compared with other methods considered.
Resumo:
In this paper we consider the problem of learning an n × n kernel matrix from m(1) similarity matrices under general convex loss. Past research have extensively studied the m = 1 case and have derived several algorithms which require sophisticated techniques like ACCP, SOCP, etc. The existing algorithms do not apply if one uses arbitrary losses and often can not handle m > 1 case. We present several provably convergent iterative algorithms, where each iteration requires either an SVM or a Multiple Kernel Learning (MKL) solver for m > 1 case. One of the major contributions of the paper is to extend the well knownMirror Descent(MD) framework to handle Cartesian product of psd matrices. This novel extension leads to an algorithm, called EMKL, which solves the problem in O(m2 log n 2) iterations; in each iteration one solves an MKL involving m kernels and m eigen-decomposition of n × n matrices. By suitably defining a restriction on the objective function, a faster version of EMKL is proposed, called REKL,which avoids the eigen-decomposition. An alternative to both EMKL and REKL is also suggested which requires only an SVMsolver. Experimental results on real world protein data set involving several similarity matrices illustrate the efficacy of the proposed algorithms.
Resumo:
We propose two variants of the Q-learning algorithm that (both) use two timescales. One of these updates Q-values of all feasible state-action pairs at each instant while the other updates Q-values of states with actions chosen according to the ‘current ’ randomized policy updates. A sketch of convergence of the algorithms is shown. Finally, numerical experiments using the proposed algorithms for routing on different network topologies are presented and performance comparisons with the regular Q-learning algorithm are shown.
Resumo:
In this article, we consider the single-machine scheduling problem with past-sequence-dependent (p-s-d) setup times and a learning effect. The setup times are proportional to the length of jobs that are already scheduled; i.e. p-s-d setup times. The learning effect reduces the actual processing time of a job because the workers are involved in doing the same job or activity repeatedly. Hence, the processing time of a job depends on its position in the sequence. In this study, we consider the total absolute difference in completion times (TADC) as the objective function. This problem is denoted as 1/LE, (Spsd)/TADC in Kuo and Yang (2007) ('Single Machine Scheduling with Past-sequence-dependent Setup Times and Learning Effects', Information Processing Letters, 102, 22-26). There are two parameters a and b denoting constant learning index and normalising index, respectively. A parametric analysis of b on the 1/LE, (Spsd)/TADC problem for a given value of a is applied in this study. In addition, a computational algorithm is also developed to obtain the number of optimal sequences and the range of b in which each of the sequences is optimal, for a given value of a. We derive two bounds b* for the normalising constant b and a* for the learning index a. We also show that, when a < a* or b > b*, the optimal sequence is obtained by arranging the longest job in the first position and the rest of the jobs in short processing time order.
Resumo:
Localization of underwater acoustic sources is a problem of great interest in the area of ocean acoustics. There exist several algorithms for source localization based on array signal processing.It is of interest to know the theoretical performance limits of these estimators. In this paper we develop expressions for the Cramer-Rao-Bound (CRB) on the variance of direction-of-arrival(DOA) and range-depth estimators of underwater acoustic sources in a shallow range-independent ocean for the case of generalized Gaussian noise. We then study the performance of some of the popular source localization techniques,through simulations, for DOA/range-depth estimation of underwater acoustic sources in shallow ocean by comparing the variance of the estimators with the corresponding CRBs.
Resumo:
This paper describes the authors’ distributed parameter approach for derivation of closed-form expressions for the four-pole parameters of the perforated three-duct muffler components. In this method, three simultaneous second-order partial differential equations are first reduced to a set of six first-order ordinary differential equations. These equations are then uncoupled by means of a modal matrix. The resulting 6 × 6 matrix is reduced to the 2 × 2 transfer matrix using the relevant boundary conditions. This is combined with transfer matrices of other elements (upstream and downstream of this perforated element) to predict muffler performance like noise reduction, which is also measured. The correlation between experimental and theoretical values of noise reduction is shown to be satisfactory.
Resumo:
Breakout noise from HVAC ducts is important at low frequencies, and the coupling between the acoustic waves and the structural waves plays a critical role in the prediction of the transverse transmission loss. This paper describes the analytical calculation of breakout noise by incorporating three-dimensional effects along with the acoustical and structural wave coupling phenomena. The first step in the breakout noise prediction is to calculate the inside duct pressure field and the normal duct wall vibration by using the solution of the governing differential equations in terms of Green's function. The resultant equations are rearranged in terms of impedance and mobility, which results in a compact matrix formulation. The Green's function selected for the current problem is the cavity Green's function with modification of wave number in the longitudinal direction in order to incorporate the terminal impedance. The second step is to calculate the radiated sound power from the compliant duct walls by means of an ``equivalent unfolded plate'' model. The transverse transmission loss from the duct walls is calculated using the ratio of the incident power due to surface source inside the duct to the acoustic power radiated from the compliant duct walls. Analytical results are validated with the FE-BE numerical models.
Resumo:
A new automatic generation controller (AGC) design approach, adopting reinforcement learning (RL) techniques, was recently pro- posed [1]. In this paper we demonstrate the design and performance of controllers based on this RL approach for automatic generation control of systems consisting of units having complex dynamics—the reheat type of thermal units. For such systems, we also assess the capabilities of RL approach in handling realistic system features such as network changes, parameter variations, generation rate constraint (GRC), and governor deadband.
Resumo:
In this paper, we derive Hybrid, Bayesian and Marginalized Cramer-Rao lower bounds (HCRB, BCRB and MCRB) for the single and multiple measurement vector Sparse Bayesian Learning (SBL) problem of estimating compressible vectors and their prior distribution parameters. We assume the unknown vector to be drawn from a compressible Student-prior distribution. We derive CRBs that encompass the deterministic or random nature of the unknown parameters of the prior distribution and the regression noise variance. We extend the MCRB to the case where the compressible vector is distributed according to a general compressible prior distribution, of which the generalized Pareto distribution is a special case. We use the derived bounds to uncover the relationship between the compressibility and Mean Square Error (MSE) in the estimates. Further, we illustrate the tightness and utility of the bounds through simulations, by comparing them with the MSE performance of two popular SBL-based estimators. We find that the MCRB is generally the tightest among the bounds derived and that the MSE performance of the Expectation-Maximization (EM) algorithm coincides with the MCRB for the compressible vector. We also illustrate the dependence of the MSE performance of SBL based estimators on the compressibility of the vector for several values of the number of observations and at different signal powers.
Resumo:
In this paper, an input receiver with a hysteresis characteristic that can work at voltage levels between 0.9 V and 5 V is proposed. The input receiver can be used as a wide voltage range Schmitt trigger also. At the same time, reliable circuit operation is ensured. According to the research findings, this is the first time a wide voltage range Schmitt trigger is being reported. The proposed circuit is compared with previously reported input receivers, and it is shown that the circuit has better noise immunity. The proposed input receiver ends the need for a separate Schmitt trigger and input buffer. The frequency of operation is also higher than that of the previously reported receiver. The circuit is simulated using HSPICE at 035-mu m standard thin oxide technology. Monte Carlo analysis is conducted at different process conditions, showing that the proposed circuit works well for different process conditions at different voltage levels of operation. A noise impulse of (V-CC/2) magnitude is added to the input voltage to show that the receiver receives the correct logic level even in the presence of noise. Here, V-CC is the fixed voltage supply of 3.3 V.