153 resultados para Laterally Loaded Pile
Resumo:
Transition metal oxide (TiO2, Pe(2)O(3), CoO) loaded MCM-41 and MCM-48 were synthesized by a two-step surfactant-based process. Nanoporous, high surface area compounds were obtained after calcination of the compounds. The catalysts were characterized by SEM, XRD, XPS, UV-vis and BET surface area analysis. The catalysts showed high activity for the photocatalytic degradation of both anionic and cationic dyes. The degradation of the dyes was described using Langmuir-Hinshelwood kinetics and the associated rate parameters were determined.
Resumo:
Polyaniline-CaTiO3 nanocomposites with their various weight percentages were prepared by chemical oxidative in situ polymerization technique. The prepared composites were characterized by Fourier transform infrared spectroscopy, scanning electronic microscope, and X-ray diffraction. The temperature-dependent dc conductivity of polyaniline-CaTiO3 nanocomposite was studied within the range of 40-200 degrees C and found that 50 wt% shows high conductivity compared to other composites. Humidity sensor properties of polyaniline-CaTiO3 nanocomposite show better sensing properties and exhibit good linearity in sensing response curve, which discuss the implications of distortions and nonstoichiometry on their physical properties. Among all composites, 50 wt% of polyaniline-CaTiO3 nanocomposites show high sensitivity up to similar to 90% and their response-recovery times are 500 and 453 s, respectively.
Resumo:
The study extends the first order reliability method (FORM) and inverse FORM to update reliability models for existing, statically loaded structures based on measured responses. Solutions based on Bayes' theorem, Markov chain Monte Carlo simulations, and inverse reliability analysis are developed. The case of linear systems with Gaussian uncertainties and linear performance functions is shown to be exactly solvable. FORM and inverse reliability based methods are subsequently developed to deal with more general problems. The proposed procedures are implemented by combining Matlab based reliability modules with finite element models residing on the Abaqus software. Numerical illustrations on linear and nonlinear frames are presented. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, the stiffness and mass per unit length distributions of a rotating beam, which is isospectral to a given uniform axially loaded nonrotating beam, are determined analytically. The Barcilon-Gottlieb transformation is extended so that it transforms the governing equation of a rotating beam into the governing equation of a uniform, axially loaded nonrotating beam. Analysis is limited to a certain class of Euler-Bernoulli cantilever beams, where the product between the stiffness and the cube of mass per unit length is a constant. The derived mass and stiffness distributions of the rotating beam are used in a finite element analysis to confirm the frequency equivalence of the given and derived beams. Examples of physically realizable beams that have a rectangular cross section are shown as a practical application of the analysis.
Resumo:
We have studied the preparation of zinc oxide nanoparticles loaded in various weight percentages in ortho-chloropolyaniline by in situ polymerization method. The length of the O-chloropolyaniline tube is found to be 200 nm and diameter is about 150 nm wherein the embedded ZnO nanoparticles is of 13 nm as confirmed from scanning electron microscopy as well as transmission electron microscopy characterizations. The presence of the vibration band of the metal oxide and other characteristic bands confirms that the polymer nanocomposites are characterized by their Fourier transmission infrared spectroscopy. The X-ray diffraction pattern of nanocomposites reveals their polycrystalline nature. Electrical property of nanocomposites is a function of the filler as well as the matrix. Cole-Cole plots reveal the presence of well-defined semicircular arcs at high frequencies which are attributed to the bulk resistance of the material. Among all nanocomposites, 30 wt% shows the low relaxation time of 151 s, and hence it has high conductivity.
Resumo:
Backgrond: Muscular dystrophies consist of a number of juvenile and adult forms of complex disorders which generally cause weakness or efficiency defects affecting skeletal muscles or, in some kinds, other types of tissues in all parts of the body are vastly affected. In previous studies, it was observed that along with muscular dystrophy, immune inflammation was caused by inflammatory cells invasion - like T lymphocyte markers (CD8+/CD4+). Inflammatory processes play a major part in muscular fibrosis in muscular dystrophy patients. Additionally, a significant decrease in amounts of two myogenic recovery factors (myogenic differentation 1 MyoD] and myogenin) in animal models was observed. The drug glatiramer acetate causes anti-inflammatory cytokines to increase and T helper (Th) cells to induce, in an as yet unknown mechanism. MyoD recovery activity in muscular cells justifies using it alongside this drug. Methods: In this study, a nanolipodendrosome carrier as a drug delivery system was designed. The purpose of the system was to maximize the delivery and efficiency of the two drug factors, MyoD and myogenin, and introduce them as novel therapeutic agents in muscular dystrophy phenotypic mice. The generation of new muscular cells was analyzed in SW1 mice. Then, immune system changes and probable side effects after injecting the nanodrug formulations were investigated. Results: The loaded lipodendrimer nanocarrier with the candidate drug, in comparison with the nandrolone control drug, caused a significant increase in muscular mass, a reduction in CD4+/CD8+ inflammation markers, and no significant toxicity was observed. The results support the hypothesis that the nanolipodendrimer containing the two candidate drugs will probably be an efficient means to ameliorate muscular degeneration, and warrants further investigation.
Resumo:
A square ring microstrip antenna can be modified for dual-band operations by appropriately attaching an open ended stub. The input impedance of this antenna is analyzed here using multi-port network modeling (MNM) approach. The coupled feed is included by defining additional terms in the model. A prototype antenna is fabricated and tested to validate these computations.
Resumo:
Molecular dynamics simulations of bilayers in a surfactant/co-surfactant/water system with explicit solvent molecules show formation of topologically distinct gel phases depending upon the bilayer composition. At low temperatures, the bilayers transform from the tilted gel phase, L beta', to the one dimensional (1D) rippled, P beta' phase as the surfactant concentration is increased. More interestingly, we observe a two dimensional (2D) square phase at higher surfactant concentration which, upon heating, transforms to the gel L beta' phase. The thickness modulations in the 1D rippled and square phases are asymmetric in two surfactant leaflets and the bilayer thickness varies by a factor of similar to 2 between maximum and minimum. The 1D ripple consists of a thinner interdigitated region of smaller extent alternating with a thicker non-interdigitated region. The 2D ripple phase is made up of two superimposed square lattices of maximum and minimum thicknesses with molecules of high tilt forming a square lattice translated from the lattice formed with the thickness minima. Using Voronoi diagrams we analyze the intricate interplay between the area-per-head-group, height modulations and chain tilt for the different ripple symmetries. Our simulations indicate that composition plays an important role in controlling the formation of low temperature gel phase symmetries and rippling accommodates the increased area-per-head-group of the surfactant molecules.
Resumo:
In this paper, we derive analytical expressions for mass and stiffness functions of transversely vibrating clamped-clamped non-uniform beams under no axial loads, which are isospectral to a given uniform axially loaded beam. Examples of such axially loaded beams are beam columns (compressive axial load) and piano strings (tensile axial load). The Barcilon-Gottlieb transformation is invoked to transform the non-uniform beam equation into the axially loaded uniform beam equation. The coupled ODEs involved in this transformation are solved for two specific cases (pq (z) = k (0) and q = q (0)), and analytical solutions for mass and stiffness are obtained. Examples of beams having a rectangular cross section are shown as a practical application of the analysis. Some non-uniform beams are found whose frequencies are known exactly since uniform axially loaded beams with clamped ends have closed-form solutions. In addition, we show that the tension required in a stiff piano string with hinged ends can be adjusted by changing the mass and stiffness functions of a stiff string, retaining its natural frequencies.
Resumo:
The compressive behavior of carbon nanotube (CNT) foam with an entangled microstructure has become an important research area due to its excellent energy absorption capability. This report presents a tailored mechanical behavior of CNT foam under an applied magnetic field when all CNTs in the foam are coated with magnetic nanoparticles. The presence of nanoparticles not only enhanced the stiffness of the foam to four times but also revealed a nonlinear variation in both the stress and energy absorption capability with the gradual increase of the magnetic field. Magnetization of both CNT and attached nanoparticles along the magnetic field direction are shown to play a crucial role in determining the dominant deformation mechanism.
Resumo:
Well-crystallized anatase and mixed (anatase-rutile) phase TiO2 thin films were deposited by DC magnetron sputtering technique at various DC powers in the range of 80-140 W. Pure anatase phase was observed in the TiO2 films deposited at low power of 80 W. Films deposited at 120 W were composed of both anatase and rutile phases. At higher power of 140 W, the films are rutile dominated and the rutile percentage increased from 0 to 82% with increase of DC power. The same results of phase change were confirmed by Raman studies. The surface morphology of the TiO2 films showed that the density of the films increased with increase of sputter power. The optical band gap of the films varied from 3.35 to 3.14 eV with increase of DC power. The photocatalytic activity of the TiO2 films increased with increasing DC power up to 120 W and after that it decreases. We found that the TiO2 films deposited at 120 W with 48% of rutile phase, exhibited high photocatalytic activity (43% of degradation) under UV light compared with other TiO2 films. After loading the optimized Ag nanoparticles on the mixed phase TiO2 films, the photocatalytic activity shifted from UV to visible region with enhancement of photocatalytic activity (55% of degradation). (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Well-crystallized anatase and mixed (anatase-rutile) phase TiO2 thin films were deposited by DC magnetron sputtering technique at various DC powers in the range of 80-140 W. Pure anatase phase was observed in the TiO2 films deposited at low power of 80 W. Films deposited at 120 W were composed of both anatase and rutile phases. At higher power of 140 W, the films are rutile dominated and the rutile percentage increased from 0 to 82% with increase of DC power. The same results of phase change were confirmed by Raman studies. The surface morphology of the TiO2 films showed that the density of the films increased with increase of sputter power. The optical band gap of the films varied from 3.35 to 3.14 eV with increase of DC power. The photocatalytic activity of the TiO2 films increased with increasing DC power up to 120 W and after that it decreases. We found that the TiO2 films deposited at 120 W with 48% of rutile phase, exhibited high photocatalytic activity (43% of degradation) under UV light compared with other TiO2 films. After loading the optimized Ag nanoparticles on the mixed phase TiO2 films, the photocatalytic activity shifted from UV to visible region with enhancement of photocatalytic activity (55% of degradation). (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Two antineoplastic agents, Imatinib (IM) and 5-Fluorouracil (FU) were conjugated by hydrolysable linkers through an amide bond and entrapped in polymeric Human Serum Albumin (HSA) nanoparticles. The presence of dual drugs in a common carrier has the advantage of reaching the site of action simultaneously and acting at different phases of the cell cycle to arrest the growth of cancer cells before they develop chemoresistance. The study has demonstrated an enhanced anticancer activity of the conjugate, and conjugate loaded stealth HSA nanoparticles (NPs) in comparison to the free drug in A-549 human lung carcinoma cell line and Zebra fish embryos (Danio rerio). Hydrolysability of the conjugate has also been demonstrated with complete hydrolysis being observed after 12 h. In vivo pharmacodynamics study in terms of tumor volume and pharmacokinetics in mice for conjugate (IM-SC-FU) and conjugate loaded nanoparticles showed significant anti-cancer activity. The other parameters evaluated were particle size (86nm), Poly Dispersive Index (PDI) (0.209), zeta potential (-49mV), drug entrapment efficiency (96.73%) and drug loading efficiency (89%). Being in stealth mode gives the potential for the NPs to evade Reticulo-Endothelial system (RES), achieve passive targeting by Enhanced Permeation Retention (EPR) effect with controlled release of the therapeutic agent. As the conjugate cleaves into individual drugs in the tumor environment, this promises better suppression of cancer chemoresistance by delivering dual drugs with different modes of action at the same site, thereby synergistically inhibiting the growth of cancerous tissue.
Resumo:
When freshly starved amoebae of Dictyostelium discoideum are loaded with the Ca2+-specific dye indo-1/AM and analyzed in a fluorescence-activated cell sorter, they exhibit a quasi-bimodal distribution of fluorescence. This permits a separation of the population into two classes: H, or ''high Ca2+-indo-1 fluorescence,'' and L, or ''low Ca2+-indo-1 fluorescence.'' Simultaneous monitoring of Ca2+-indo-1 and Ca2+-chlortetracycline fluorescence shows that by and large the same cells tend to have high (or low) levels of both cytoplasmic and sequestered Ca2+. Next we label H cells with tetramethylrhodamine isothiocyanate (TRITC) and mix them in a 1:4 ratio with L cells, In the slugs that result, TRITC fluorescence is confined mainly to the anterior prestalk region. This implies that amoebae with relatively high Ca2+ at the vegetative stage tend to develop into prestalk cells and those with low Ca2+ into prespores. Polysphondylium violaceum, a cellular slime mold that does not possess prestalk and prespore cells, also does not display a Ca2+-dependent heterogeneity at the vegetative stage or in slugs. Finally, confirming earlier findings with the fluorophore fura-2 (Azhar ef al., Curr. Sci. 68, 337-342 (1995)), a prestalk-prespore difference in cellular Ca2+ is present in the cells of the slug in vivo. These findings are discussed in light of the possible roles of Ca2+ for cell differentiation in D. discoideum.
Resumo:
The effects of tangential friction at pin—hole interfaces are appropriately modelled for the analysis of fasteners in large composite (orthotropic) plate loaded along its edges. The pin—hole contact could be of interference, clearance or neat fit. When the plate load is monotonically increased, interference fits give rise to receding contact, whereas clearance fits result in advancing contact. In either case, the changing contact situations lead to non-linear moving boundary value problems. The neat fit comes out as a special case in which the contact and separation regions are invariant with the applied load level and so the problem remains linear. The description of boundary conditions in the presence of tangential friction, will depend on whether the problem is one of advancing or receding contact, advancing contact presenting a special problem. A model is developed for the limiting case of a rigid pin and an ideally rough interface (infinitely large friction coefficient). The non-linearity resulting from the continuously varying proportions of contact and separation at the interface, is handled by an “Inverse Formulation” which was successfully applied earlier by the authors for smooth (zero friction) interfacial conditions. The additional difficulty introduced by advancing contact is handled by adopting a “Marching Solution”. The modelling and the procedure are illustrated in respect of symmetric plate load cases. Numerical results are presented bringing out the effects of interfacial friction and plate orthotropy on load-contact relations and plate stresses.