60 resultados para Landscape ecology -- Catalonia -- Alt Empordà -- 1957-2001


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural hazards such as landslides are triggered by numerous factors such as ground movements, rock falls, slope failure, debris flows, slope instability, etc. Changes in slope stability happen due to human intervention, anthropogenic activities, change in soil structure, loss or absence of vegetation (changes in land cover), etc. Loss of vegetation happens when the forest is fragmented due to anthropogenic activities. Hence land cover mapping with forest fragmentation can provide vital information for visualising the regions that require immediate attention from slope stability aspects. The main objective of this paper is to understand the rate of change in forest landscape from 1973 to 2004 through multi-sensor remote sensing data analysis. The forest fragmentation index presented here is based on temporal land use information and forest fragmentation model, in which the forest pixels are classified as patch, transitional, edge, perforated, and interior, that give a measure of forest continuity. The analysis carried out for five prominent watersheds of Uttara Kannada district– Aganashini, Bedthi, Kali, Sharavathi and Venkatpura revealed that interior forest is continuously decreasing while patch, transitional, edge and perforated forest show increasing trend. The effect of forest fragmentation on landslide occurrence was visualised by overlaying the landslide occurrence points on classified image and forest fragmentation map. The increasing patch and transitional forest on hill slopes are the areas prone to landslides, evident from the field verification, indicating that deforestation is a major triggering factor for landslides. This emphasises the need for immediate conservation measures for sustainable management of the landscape. Quantifying and describing land use - land cover change and fragmentation is crucial for assessing the effect of land management policies and environmental protection decisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Dispersal ability of a species is a key ecological characteristic, affecting a range of processes from adaptation, community dynamics and genetic structure, to distribution and range size. It is determined by both intrinsic species traits and extrinsic landscape-related properties. 2. Using butterflies as a model system, the following questions were addressed: (i) given similar extrinsic factors, which intrinsic species trait(s) explain dispersal ability? (ii) can one of these traits be used as a proxy for dispersal ability? (iii) the effect of interactions between the traits, and phylogenetic relatedness, on dispersal ability. 3. Four data sets, using different measures of dispersal, were compiled from published literature. The first data set uses mean dispersal distances from capture-mark-recapture studies, and the other three use mobility indices. Data for six traits that can potentially affect dispersal ability were collected: wingspan, larval host plant specificity, adult habitat specificity, mate location strategy, voltinism and flight period duration. Each data set was subjected to both unifactorial, and multifactorial, phylogenetically controlled analyses. 4. Among the factors considered, wingspan was the most important determinant of dispersal ability, although the predictive powers of regression models were low. Voltinism and flight period duration also affect dispersal ability, especially in case of temperate species. Interactions between the factors did not affect dispersal ability, and phylogenetic relatedness was significant in one data set. 5. While using wingspan as the only proxy for dispersal ability maybe problematic, it is usually the only easily accessible species-specific trait for a large number of species. It can thus be a satisfactory proxy when carefully interpreted, especially for analyses involving many species from all across the world.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a framework for understanding the difference between strong and fragile behavior in the dynamics of glass-forming liquids from the properties of the potential energy landscape. Our approach is based on a master equation description of the activated jump dynamics among the local minima of the potential energy (the so-called inherent structures) that characterize the potential energy landscape of the system. We study the dynamics of a small atomic cluster using this description as well as molecular dynamics simulations and demonstrate the usefulness of our approach for this system. Many of the remarkable features of the complex dynamics of glassy systems emerge from the activated dynamics in the potential energy landscape of the atomic cluster. The dynamics of the system exhibits typical characteristics of a strong supercooled liquid when the system is allowed to explore the full configuration space. This behavior arises because the dynamics is dominated by a few lowest-lying minima of the potential energy and the potential energy barriers between these minima. When the system is constrained to explore only a limited region of the potential energy landscape that excludes the basins of attraction of a few lowest-lying minima, the dynamics is found to exhibit the characteristics of a fragile liquid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The idea of a structural landscape is based on the fact that a large number of crystal structures can be associated with a particular organic molecule. Taken together, all these structures constitute the landscape. The landscape includes polymorphs, pseudopolymorphs and solvates. Under certain circumstances, it may also include multicomponent crystals (or co-crystals) that contain the reference molecule as one of the components. Under still other circumstances, the landscape may include the crystal structures of molecules that are closely related to the reference molecule. The idea of a landscape is to facilitate the understanding of the process of crystallization. It includes all minima that can, in principle, be accessed by the molecule in question as it traverses the path from solution to the crystal. Isonicotinamide is a molecule that is known to form many co-crystals. We report here a 2 : 1 co-crystal of this amide with 3,5-dinitrobenzoic acid, wherein an unusual N-H center dot center dot center dot N hydrogen-bonded pattern is observed. This crystal structure offers some hints about the recognition processes between molecules that might be implicated during crystallization. Also included is a review of other recent results that illustrate the concept of the structural landscape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urbanisation is a dynamic complex phenomenon involving large scale changes in the land uses at local levels. Analyses of changes in land uses in urban environments provide a historical perspective of land use and give an opportunity to assess the spatial patterns, correlation, trends, rate and impacts of the change, which would help in better regional planning and good governance of the region. Main objective of this research is to quantify the urban dynamics using temporal remote sensing data with the help of well-established landscape metrics. Bangalore being one of the rapidly urbanising landscapes in India has been chosen for this investigation. Complex process of urban sprawl was modelled using spatio temporal analysis. Land use analyses show 584% growth in built-up area during the last four decades with the decline of vegetation by 66% and water bodies by 74%. Analyses of the temporal data reveals an increase in urban built up area of 342.83% (during 1973-1992), 129.56% (during 1992-1999), 106.7% (1999-2002), 114.51% (2002-2006) and 126.19% from 2006 to 2010. The Study area was divided into four zones and each zone is further divided into 17 concentric circles of 1 km incrementing radius to understand the patterns and extent of the urbanisation at local levels. The urban density gradient illustrates radial pattern of urbanisation for the period 1973-2010. Bangalore grew radially from 1973 to 2010 indicating that the urbanisation is intensifying from the central core and has reached the periphery of the Greater Bangalore. Shannon's entropy, alpha and beta population densities were computed to understand the level of urbanisation at local levels. Shannon's entropy values of recent time confirms dispersed haphazard urban growth in the city, particularly in the outskirts of the city. This also illustrates the extent of influence of drivers of urbanisation in various directions. Landscape metrics provided in depth knowledge about the sprawl. Principal component analysis helped in prioritizing the metrics for detailed analyses. The results clearly indicates that whole landscape is aggregating to a large patch in 2010 as compared to earlier years which was dominated by several small patches. The large scale conversion of small patches to large single patch can be seen from 2006 to 2010. In the year 2010 patches are maximally aggregated indicating that the city is becoming more compact and more urbanised in recent years. Bangalore was the most sought after destination for its climatic condition and the availability of various facilities (land availability, economy, political factors) compared to other cities. The growth into a single urban patch can be attributed to rapid urbanisation coupled with the industrialisation. Monitoring of growth through landscape metrics helps to maintain and manage the natural resources. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental crystal structures of mono and polyfluorinated benzoic acids correspond to high energy computed crystal structures of benzoic acid itself, thereby permitting access to its structural landscape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tropical dry forests and savannas constitute more than half of all tropical forests and grasslands, but little is known about forest fire regimes within these two extensive types of ecosystems. Forest fire regimes in a predominantly dry forest in India, the Nilgiri landscape, and a predominantly savanna ecosystem in the Sathyamangalam landscape, were examined. Remote sensing data were applied to delineate burned areas, determine fire size characteristics, and to estimate fire-rotation intervals. Belt transects (0.5 ha) were used to estimate forest structure, diversity, and fuel loads. Mean area burned, mean number of fires, and mean fire size per year were substantially higher in the Nilgiri landscape compared to the Sathyamangalam landscape. Mean fire-rotational interval was 7.1 yr in the Nilgiri landscape and 44.1 yr in the Sathyamangalam landscape. Tree (>= 10 cm diameter at breast height) species diversity, tree density, and basal area were significantly higher in the Nilgiri landscape compared to the Sathyamangalam landscape. Total fuel loads were significantly higher in tropical dry and moist deciduous forests in the Nilgiri landscape, but total fuel loads were higher in the tropical dry thorn forests of the Sathyamangalam landscape. Thus, the two landscapes revealed contrasting fire regimes and forest characteristics, with more and four-fold larger fires in the Nilgiri landscape. The dry forests and savannas could be maintained by a combination of factors, such as fire, grazing pressures, and herbivore populations. Understanding the factors maintaining these two ecosystems will be critical for their conservation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Western Ghats (WG) of south India, a global biodiversity hotspot, has experienced complex geological history being part of Gondwana landmass and encountered extensive volcanic activity at the end of Cretaceous epoch. It also has a climatically and topographically heterogeneous landscape. Thus, the WG offer a unique setting to explore the influence of ecological and geological processes on the current diversity and distribution of its biota. To this end, three explicit biogeographical scenarios were hypothesized to evaluate the distribution and diversification of wet evergreen species of the WG - (1) southern WG was a refuge for the wet evergreen species during the Cretaceous volcanism, (2) phylogenetic breaks in the species phylogeny would correspond to geographic breaks (i.e., the Palghat gap) in the WG, and (3) species from each of the biogeographic subdivisions within the WG would form distinct clades. These hypotheses were tested on the centipede genus Digitipes from the WG which is known to be an ancient, endemic, and monophyletic group. The Digitipes molecular phylogeny was subjected to divergence date estimation using Bayesian approach, and ancestral areas were reconstructed using parsimony approach for each node in the phylogeny. Ancestral-area reconstruction suggested 13 independent dispersal events to explain the current distribution of the Digitipes species in the WG. Among these 13 dispersals, two dispersal events were at higher level in the Digitipes phylogeny and were from the southern WG to the central and northern WG independently in the Early Paleocene, after the Cretaceous Volcanism. The remaining 11 dispersal events explained the species' range expansions of which nine dispersals were from the southern WG to other biogeographic subdivisions in the Eocene-Miocene in the post-volcanic periods where species-level diversifications occurred. Taken together, these results suggest that southern WG might have served as a refuge for Digitipes species during Cretaceous volcanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To achieve food security and meet the demands of the ever-growing human populations, farming systems have assumed unsustainable practices to produce more from a finite land area. This has been cause for concern mainly due to the often-irreversible damage done to the otherwise productive agricultural landscapes. Agro-ecology is proclaimed to be deteriorating due to eroding integrity of connected ecological mosaics and vulnerability to climate change. This has contributed to declining species diversity, loss of buffer vegetation, fragmentation of habitats, and loss of natural pollinators or predators, which eventually leads to decline in ecosystem services. Currently, a hierarchy of conservation initiatives is being considered to restore ecological integrity of agricultural landscapes. However, the challenge of identifying a suitable conservation strategy is a daunting task in view of socio-ecological factors that may constrain the choice of available strategies. One way to mitigate this situation and integrate biodiversity with agricultural landscapes is to implement offset mechanisms, which are compensatory and balancing approaches to restore the ecological health and function of an ecosystem. This needs to be tailored to the history of location specific agricultural practices, and the social, ecological and environmental conditions. The offset mechanisms can complement other initiatives through which farmers are insured against landscape-level risks such as droughts, fire and floods. For countries in the developing world with significant biodiversity and extensive agriculture, we should promote a comprehensive model of sustainable agricultural landscapes and ecosystem services, replicable at landscape to regional scales. Arguably, the model can be a potential option to sustain the integrity of biodiversity mosaic in agricultural landscapes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial information at the landscape scale is extremely important for conservation planning, especially in the case of long-ranging vertebrates. The biodiversity-rich Anamalai hill ranges in the Western Ghats of southern India hold a viable population for the long-term conservation of the Asian elephant. Through rapid but extensive field surveys we mapped elephant habitat, corridors, vegetation and land-use patterns, estimated the elephant population density and structure, and assessed elephant-human conflict across this landscape. GIS and remote sensing analyses indicate that elephants are distributed among three blocks over a total area of about 4600 km(2). Approximately 92% remains contiguous because of four corridors; however, under 4000 km2 of this area may be effectively used by elephants. Nine landscape elements were identified, including five natural vegetation types, of which tropical moist deciduous forest is dominant. Population density assessed through the dung count method using line transects covering 275 km of walk across the effective elephant habitat of the landscape yielded a mean density of 1.1 (95% Cl = 0.99-1.2) elephant/km(2). Population structure from direct sighting of elephants showed that adult male elephants constitute just 2.9% and adult females 42.3% of the population with the rest being subadults (27.4%), juveniles (16%) and calves (11.4%). Sex ratios show an increasing skew toward females from juvenile (1:1.8) to sub-adult (1:2.4) and adult (1:14.7) indicating higher mortality of sub-adult and adult males that is most likely due to historical poaching for ivory. A rapid questionnaire survey and secondary data on elephant-human conflict from forest department records reveals that villages in and around the forest divisions on the eastern side of landscape experience higher levels of elephant-human conflict than those on the western side; this seems to relate to a greater degree of habitat fragmentation and percentage farmers cultivating annual crops in the east. We provide several recommendations that could help maintain population viability and reduce elephant-human conflict of the Anamalai elephant landscape. (C) 2013 Deutsche Gesellschaft far Saugetierkunde. Published by Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Establishing the relative orientation of the two benzene molecules in the dimer has remained an enigmatic challenge. Consensus has narrowed the choice of structures to either a T-shape, that may be tilted, or a parallel displaced arrangement, but the relatively small energy differences makes identifying the global minimum difficult. Here we report an ab initio Car-Parrinello Molecular Dynamics based metadynamics computation of the free-energy landscape of the benzene dimer. Our calculations show that although competing structures may be isoenergetic, free energy always favors a tilted T-shape geometry at all temperatures where the bound benzene dimer exist. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acid-pyridine heterosynthon may be used as a `` molecular'' module to probe the structural landscape of the benzoic acid : isonicotinamide 1 : 1 cocrystal, BA: INA. Experimental structures of 1 : 1 cocrystals of fluorobenzoic acids (FBA) with isonicotinamide (INA) contain this heterosynthon and correspond to high-energy structures of 1 : 1 BA : INA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural landscape of acid-pyridine cocrystals is explored by adopting a combinatorial matrix method with 4-substituted benzoic acids and 4-substituted pyridines. The choice of the system restricts the primary synthon to the robust acid-pyridine entity. This methodology accordingly provides hints toward the formation of secondary synthons. The pK(a) rule is validated in the landscape by taking all components of the matrix together and exploring it as a whole. Along with the global features, the exploration of landscapes reveals some local features. Apart from the identification of secondary synthons, it also sheds light on the propensity of hydration in cocrystals, synthon competition, and certain topological similarities. The method described here combines two approaches, namely, database analysis and high throughput crystallography, to extract more information with minimal extra experimental effort.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land use (LU) land cover (LC) information at a temporal scale illustrates the physical coverage of the Earth's terrestrial surface according to its use and provides the intricate information for effective planning and management activities. LULC changes are stated as local and location specific, collectively they act as drivers of global environmental changes. Understanding and predicting the impact of LULC change processes requires long term historical restorations and projecting into the future of land cover changes at regional to global scales. The present study aims at quantifying spatio temporal landscape dynamics along the gradient of varying terrains presented in the landscape by multi-data approach (MDA). MDA incorporates multi temporal satellite imagery with demographic data and other additional relevant data sets. The gradient covers three different types of topographic features, planes; hilly terrain and coastal region to account the significant role of elevation in land cover change. The seasonality is another aspect to be considered in the vegetation dominated landscapes; variations are accounted using multi seasonal data. Spatial patterns of the various patches are identified and analysed using landscape metrics to understand the forest fragmentation. The prediction of likely changes in 2020 through scenario analysis has been done to account for the changes, considering the present growth rates and due to the proposed developmental projects. This work summarizes recent estimates on changes in cropland, agricultural intensification, deforestation, pasture expansion, and urbanization as the causal factors for LULC change.