46 resultados para Land settlement
Resumo:
This paper presents hierarchical clustering algorithms for land cover mapping problem using multi-spectral satellite images. In unsupervised techniques, the automatic generation of number of clusters and its centers for a huge database is not exploited to their full potential. Hence, a hierarchical clustering algorithm that uses splitting and merging techniques is proposed. Initially, the splitting method is used to search for the best possible number of clusters and its centers using Mean Shift Clustering (MSC), Niche Particle Swarm Optimization (NPSO) and Glowworm Swarm Optimization (GSO). Using these clusters and its centers, the merging method is used to group the data points based on a parametric method (k-means algorithm). A performance comparison of the proposed hierarchical clustering algorithms (MSC, NPSO and GSO) is presented using two typical multi-spectral satellite images - Landsat 7 thematic mapper and QuickBird. From the results obtained, we conclude that the proposed GSO based hierarchical clustering algorithm is more accurate and robust.
Resumo:
This article compares the land use in solar energy technologies with conventional energy sources. This has been done by introducing two parameters called land transformation and land occupation. It has been shown that the land area transformed by solar energy power generation is small compared to hydroelectric power generation, and is comparable with coal and nuclear energy power generation when life-cycle transformations are considered. We estimate that 0.97% of total land area or 3.1% of the total uncultivable land area of India would be required to generate 3400 TWh/yr from solar energy power systems in conjunction with other renewable energy sources.
Resumo:
A recent modelling study has shown that precipitation and runoff over land would increase when the reflectivity of marine clouds is increased to counter global warming. This implies that large scale albedo enhancement over land could lead to a decrease in runoff over land. In this study, we perform simulations using NCAR CAM3.1 that have implications for Solar Radiation Management geoengineering schemes that increase the albedo over land. We find that an increase in reflectivity over land that mitigates the global mean warming from a doubling of CO2 leads to a large residual warming in the southern hemisphere and cooling in the northern hemisphere since most of the land is located in northern hemisphere. Precipitation and runoff over land decrease by 13.4 and 22.3%, respectively, because of a large residual sinking motion over land triggered by albedo enhancement over land. Soil water content also declines when albedo over land is enhanced. The simulated magnitude of hydrological changes over land are much larger when compared to changes over oceans in the recent marine cloud albedo enhancement study since the radiative forcing over land needed (-8.2 W m(-2)) to counter global mean radiative forcing from a doubling of CO2 (3.3 W m(-2)) is approximately twice the forcing needed over the oceans (-4.2 W m(-2)). Our results imply that albedo enhancement over oceans produce climates closer to the unperturbed climate state than do albedo changes on land when the consequences on land hydrology are considered. Our study also has important implications for any intentional or unintentional large scale changes in land surface albedo such as deforestation/afforestation/reforestation, air pollution, and desert and urban albedo modification.
Resumo:
This paper presents an improved hierarchical clustering algorithm for land cover mapping problem using quasi-random distribution. Initially, Niche Particle Swarm Optimization (NPSO) with pseudo/quasi-random distribution is used for splitting the data into number of cluster centers by satisfying Bayesian Information Criteria (BIC). Themain objective is to search and locate the best possible number of cluster and its centers. NPSO which highly depends on the initial distribution of particles in search space is not been exploited to its full potential. In this study, we have compared more uniformly distributed quasi-random with pseudo-random distribution with NPSO for splitting data set. Here to generate quasi-random distribution, Faure method has been used. Performance of previously proposed methods namely K-means, Mean Shift Clustering (MSC) and NPSO with pseudo-random is compared with the proposed approach - NPSO with quasi distribution(Faure). These algorithms are used on synthetic data set and multi-spectral satellite image (Landsat 7 thematic mapper). From the result obtained we conclude that use of quasi-random sequence with NPSO for hierarchical clustering algorithm results in a more accurate data classification.
Resumo:
In the analysis and design of municipal solid waste (MSW) landfills, there are many uncertainties associated with the properties of MSW during and after MSW placement. Several studies are performed involving different laboratory and field tests to understand the complex behavior and properties of MSW, and based on these studies, different models are proposed for the analysis of time dependent settlement response of MSW. For the analysis of MSW settlement, it is very important to account for the variability of model parameters that reflect different processes such as primary compression under loading, mechanical creep and biodegradation. In this paper, regression equations based on response surface method (RSM) are used to represent the complex behavior of MSW using a newly developed constitutive model. An approach to assess landfill capacities and develop landfill closure plans based on prediction of landfill settlements is proposed. The variability associated with model parameters relating to primary compression, mechanical creep and biodegradation are used to examine their influence on MSW settlement using reliability analysis framework and influence of various parameters on the settlement of MSW are estimated through sensitivity analysis. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Seasonal rainfall patterns in Bangalore, India, have been reconstructed using stable isotopic ratios in the growth bands of Giant African Land Snail shells. The present study was conducted at Bangalore, India which receives rain during the summer months. The oxygen isotopic record in the rainwater samples collected during different months covering the period of the summer monsoon of the year 2008 is compared with the isotopic ratio in the gastropod growth bands deposited simultaneously. The chronology of the shell growth band is independently established assuming the growth rate observed in a chamber experiment maintaining similar relative humidity and temperature conditions. A consistent pattern observed in the isotopic ratio in the gastropod growth bands and rainwater is demonstrated and provides a novel approach for precipitation reconstruction at seasonal and weekly time scales. This approach of using isotopic ratios in the gastropod growth bands for rainfall can serve as a substitute for filling gaps in rainfall data and for cases where no rain records are available. In addition, they can be used to determine the frequencies and magnitudes of dry spells from the past records. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Variable Endmember Constrained Least Square (VECLS) technique is proposed to account endmember variability in the linear mixture model by incorporating the variance for each class, the signals of which varies from pixel to pixel due to change in urban land cover (LC) structures. VECLS is first tested with a computer simulated three class endmember considering four bands having small, medium and large variability with three different spatial resolutions. The technique is next validated with real datasets of IKONOS, Landsat ETM+ and MODIS. The results show that correlation between actual and estimated proportion is higher by an average of 0.25 for the artificial datasets compared to a situation where variability is not considered. With IKONOS, Landsat ETM+ and MODIS data, the average correlation increased by 0.15 for 2 and 3 classes and by 0.19 for 4 classes, when compared to single endmember per class. (C) 2013 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
Feeding 9-10billion people by 2050 and preventing dangerous climate change are two of the greatest challenges facing humanity. Both challenges must be met while reducing the impact of land management on ecosystem services that deliver vital goods and services, and support human health and well-being. Few studies to date have considered the interactions between these challenges. In this study we briefly outline the challenges, review the supply- and demand-side climate mitigation potential available in the Agriculture, Forestry and Other Land Use AFOLU sector and options for delivering food security. We briefly outline some of the synergies and trade-offs afforded by mitigation practices, before presenting an assessment of the mitigation potential possible in the AFOLU sector under possible future scenarios in which demand-side measures codeliver to aid food security. We conclude that while supply-side mitigation measures, such as changes in land management, might either enhance or negatively impact food security, demand-side mitigation measures, such as reduced waste or demand for livestock products, should benefit both food security and greenhouse gas (GHG) mitigation. Demand-side measures offer a greater potential (1.5-15.6Gt CO2-eq. yr(-1)) in meeting both challenges than do supply-side measures (1.5-4.3Gt CO2-eq. yr(-1) at carbon prices between 20 and 100US$ tCO(2)-eq. yr(-1)), but given the enormity of challenges, all options need to be considered. Supply-side measures should be implemented immediately, focussing on those that allow the production of more agricultural product per unit of input. For demand-side measures, given the difficulties in their implementation and lag in their effectiveness, policy should be introduced quickly, and should aim to codeliver to other policy agenda, such as improving environmental quality or improving dietary health. These problems facing humanity in the 21st Century are extremely challenging, and policy that addresses multiple objectives is required now more than ever.
Resumo:
[1] Evaporative fraction (EF) is a measure of the amount of available energy at the earth surface that is partitioned into latent heat flux. The currently operational thermal sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS) on satellite platforms provide data only at 1000 m, which constraints the spatial resolution of EF estimates. A simple model (disaggregation of evaporative fraction (DEFrac)) based on the observed relationship between EF and the normalized difference vegetation index is proposed to spatially disaggregate EF. The DEFrac model was tested with EF estimated from the triangle method using 113 clear sky data sets from the MODIS sensor aboard Terra and Aqua satellites. Validation was done using the data at four micrometeorological tower sites across varied agro-climatic zones possessing different land cover conditions in India using Bowen ratio energy balance method. The root-mean-square error (RMSE) of EF estimated at 1000 m resolution using the triangle method was 0.09 for all the four sites put together. The RMSE of DEFrac disaggregated EF was 0.09 for 250 m resolution. Two models of input disaggregation were also tried with thermal data sharpened using two thermal sharpening models DisTrad and TsHARP. The RMSE of disaggregated EF was 0.14 for both the input disaggregation models for 250 m resolution. Moreover, spatial analysis of disaggregation was performed using Landsat-7 (Enhanced Thematic Mapper) ETM+ data over four grids in India for contrasted seasons. It was observed that the DEFrac model performed better than the input disaggregation models under cropped conditions while they were marginally similar under non-cropped conditions.
Resumo:
The agriculture, forestry and other land use (AFOLU) sector is responsible for approximately 25% of anthropogenic GHG emissions mainly from deforestation and agricultural emissions from livestock, soil and nutrient management. Mitigation from the sector is thus extremely important in meeting emission reduction targets. The sector offers a variety of cost-competitive mitigation options with most analyses indicating a decline in emissions largely due to decreasing deforestation rates. Sustainability criteria are needed to guide development and implementation of AFOLU mitigation measures with particular focus on multifunctional systems that allow the delivery of multiple services from land. It is striking that almost all of the positive and negative impacts, opportunities and barriers are context specific, precluding generic statements about which AFOLU mitigation measures have the greatest promise at a global scale. This finding underlines the importance of considering each mitigation strategy on a case-by-case basis, systemic effects when implementing mitigation options on the national scale, and suggests that policies need to be flexible enough to allow such assessments. National and international agricultural and forest (climate) policies have the potential to alter the opportunity costs of specific land uses in ways that increase opportunities or barriers for attaining climate change mitigation goals. Policies governing practices in agriculture and in forest conservation and management need to account for both effective mitigation and adaptation and can help to orient practices in agriculture and in forestry towards global sharing of innovative technologies for the efficient use of land resources. Different policy instruments, especially economic incentives and regulatory approaches, are currently being applied however, for its successful implementation it is critical to understand how land-use decisions are made and how new social, political and economic forces in the future will influence this process.
Resumo:
The end of the Palaeozoic is marked by two mass-extinction events during the Middle Permian (Capitanian) and the Late Permian (Changhsingian). Given similarities between the two events in geochemical signatures, such as large magnitude negative C-13 anomalies, sedimentological signatures such as claystone breccias, and the approximate contemporaneous emplacement of large igneous provinces, many authors have sought a common causal mechanism. Here, a new high-resolution continental record of the Capitanian event from Portal Mountain, Antarctica, is compared with previously published Changhsingian records of geochemical signatures of weathering intensity and palaeoclimatic change. Geochemical means of discriminating sedimentary provenance (Ti/Al, U/Th and La/Ce ratios) all indicate a common provenance for the Portal Mountain sediments and associated palaeosols, so changes spanning the Capitanian extinction represent changes in weathering intensity rather than sediment source. Proxies for weathering intensity chemical index of alteration, W and rare earth element accumulation all decline across the Capitanian extinction event at Portal Mountain, which is in contrast to the increased weathering recorded globally at the Late Permian extinction. Furthermore, palaeoclimatic proxies are consistent with unchanging or cooler climatic conditions throughout the Capitanian event, which contrasts with Changhsingian records that all indicate a significant syn-extinction and post-extinction series of greenhouse warming events. Although both the Capitanian and Changhsingian event records indicate significant redox shifts, palaeosol geochemistry of the Changhsingian event indicates more reducing conditions, whereas the new Capitanian record of reduced trace metal abundances (Cr, Cu, Ni and Ce) indicates more oxidizing conditions. Taken together, the differences in weathering intensity, redox and the lack of evidence for significant climatic change in the new record suggest that the Capitanian mass extinction was not triggered by dyke injection of coal-beds, as in the Changhsingian extinction, and may instead have been triggered directly by the Emeishan large igneous province or by the interaction of Emeishan basalts with platform carbonates.
Resumo:
Estimation of the municipal solid waste settlements and the contribution of each of the components are essential in the estimation of the volume of the waste that can be accommodated in a landfill and increase the post-usage of the landfill. This article describes an experimental methodology for estimating and separating primary settlement, settlement owing to creep and biodegradation-induced settlement. The primary settlement and secondary settlement have been estimated and separated based on 100% pore pressure dissipation time and the coefficient of consolidation. Mechanical creep and biodegradation settlements were estimated and separated based on the observed time required for landfill gas production. The results of a series of laboratory triaxial tests, creep tests and anaerobic reactor cell setups were conducted to describe the components of settlement. All the tests were conducted on municipal solid waste (compost reject) samples. It was observed that biodegradation accounted to more than 40% of the total settlement, whereas mechanical creep contributed more than 20% towards the total settlement. The essential model parameters, such as the compression ratio (C-c'), rate of mechanical creep (c), coefficient of mechanical creep (b), rate of biodegradation (d) and the total strain owing to biodegradation (E-DG), are useful parameters in the estimation of total settlements as well as components of settlement in landfill.
Resumo:
Land surface temperature (LST) is an important variable in climate, hydrologic, ecological, biophysical and biochemical studies (Mildrexler et al., 2011). The most effective way to obtain LST measurements is through satellites. Presently, LST from moderate resolution imaging spectroradiometer (MODIS) sensor is applied in various fields due to its high spatial and temporal availability over the globe, but quite difficult to provide observations in cloudy conditions. This study evolves of prediction of LST under clear and cloudy conditions using microwave vegetation indices (MVIs), elevation, latitude, longitude and Julian day as inputs employing an artificial neural network (ANN) model. MVIs can be obtained even under cloudy condition, since microwave radiation has an ability to penetrate through clouds. In this study LST and MVIs data of the year 2010 for the Cauvery basin on a daily basis were obtained from MODIS and advanced microwave scanning radiometer (AMSR-E) sensors of aqua satellite respectively. Separate ANN models were trained and tested for the grid cells for which both LST and MVI were available. The performance of the models was evaluated based on standard evaluation measures. The best performing model was used to predict LST where MVIs were available. Results revealed that predictions of LST using ANN are in good agreement with the observed values. The ANN approach presented in this study promises to be useful for predicting LST using satellite observations even in cloudy conditions. (C) 2015 The Authors. Published by Elsevier B.V.
Resumo:
Land-use changes since the start of the industrial era account for nearly one-third of the cumulative anthropogenic CO2 emissions. In addition to the greenhouse effect of CO2 emissions, changes in land use also affect climate via changes in surface physical properties such as albedo, evapotranspiration and roughness length. Recent modelling studies suggest that these biophysical components may be comparable with biochemical effects. In regard to climate change, the effects of these two distinct processes may counterbalance one another both regionally and, possibly, globally. In this article, through hypothetical large-scale deforestation simulations using a global climate model, we contrast the implications of afforestation on ameliorating or enhancing anthropogenic contributions from previously converted (agricultural) land surfaces. Based on our review of past studies on this subject, we conclude that the sum of both biophysical and biochemical effects should be assessed when large-scale afforestation is used for countering global warming, and the net effect on global mean temperature change depends on the location of deforestation/afforestation. Further, although biochemical effects trigger global climate change, biophysical effects often cause strong local and regional climate change. The implication of the biophysical effects for adaptation and mitigation of climate change in agriculture and agroforestry sectors is discussed. center dot Land-use changes affect global and regional climates through both biochemical and biophysical process. center dot Climate effect from biophysical process depends on the location of land-use change. center dot Climate mitigation strategies such as afforestation/reforestation should consider the net effect of biochemical and biophysical processes for effective mitigation. center dot Climate-smart agriculture could use bio-geoengineering techniques that consider plant biophysical characteristics such as reflectivity and water use efficiency.