111 resultados para LIKELIHOOD


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a low-complexity algorithm based on reactive tabu search (RTS) for near maximum likelihood (ML) detection in large-MIMO systems. The conventional RTS algorithm achieves near-ML performance for 4-QAM in large-MIMO systems. But its performance for higher-order QAM is far from ML performance. Here, we propose a random-restart RTS (R3TS) algorithm which achieves significantly better bit error rate (BER) performance compared to that of the conventional RTS algorithm in higher-order QAM. The key idea is to run multiple tabu searches, each search starting with a random initial vector and choosing the best among the resulting solution vectors. A criterion to limit the number of searches is also proposed. Computer simulations show that the R3TS algorithm achieves almost the ML performance in 16 x 16 V-BLAST MIMO system with 16-QAM and 64-QAM at significantly less complexities than the sphere decoder. Also, in a 32 x 32 V-BLAST MIMO system, the R3TS performs close to ML lower bound within 1.6 dB for 16-QAM (128 bps/Hz), and within 2.4 dB for 64-QAM (192 bps/Hz) at 10(-3) BER.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Constellation Constrained (CC) capacity regions of two-user Single-Input Single-Output (SISO) Gaussian Multiple Access Channels (GMAC) are computed for several Non-Orthogonal Multiple Access schemes (NO-MA) and Orthogonal Multiple Access schemes (O-MA). For NO-MA schemes, a metric is proposed to compute the angle(s) of rotation between the input constellations such that the CC capacity regions are maximally enlarged. Further, code pairs based on Trellis Coded Modulation (TCM) are designed with PSK constellation pairs and PAM constellation pairs such that any rate pair within the CC capacity region can be approached. Such a NO-MA scheme which employs CC capacity approaching trellis codes is referred to as Trellis Coded Multiple Access (TCMA). Then, CC capacity regions of O-MA schemes such as Frequency Division Multiple Access (FDMA) and Time Division Multiple Access (TDMA) are also computed and it is shown that, unlike the Gaussian distributed continuous constellations case, the CC capacity regions with FDMA are strictly contained inside the CC capacity regions with TCMA. Hence, for finite constellations, a NO-MA scheme such as TCMA is better than FDMA and TDMA which makes NO-MA schemes worth pursuing in practice for two-user GMAC. Then, the idea of introducing rotations between the input constellations is used to construct Space-Time Block Code (STBC) pairs for two-user Multiple-Input Single-Output (MISO) fading MAC. The proposed STBCs are shown to have reduced Maximum Likelihood (ML) decoding complexity and information-losslessness property. Finally, STBC pairs with reduced sphere decoding complexity are proposed for two-user Multiple-Input Multiple-Output (MIMO) fading MAC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper considers the problem of spectrum sensing, i.e., the detection of whether or not a primary user is transmitting data by a cognitive radio. The Bayesian framework is adopted, with the performance measure being the probability of detection error. A decentralized setup, where N sensors use M observations each to arrive at individual decisions that are combined at a fusion center to form the overall decision is considered. The unknown fading channel between the primary sensor and the cognitive radios makes the individual decision rule computationally complex, hence, a generalized likelihood ratio test (GLRT)-based approach is adopted. Analysis of the probabilities of false alarm and miss detection of the proposed method reveals that the error exponent with respect to M is zero. Also, the fusion of N individual decisions offers a diversity advantage, similar to diversity reception in communication systems, and a tight bound on the error exponent is presented. Through an analysis in the low power regime, the number of observations needed as a function of received power, to achieve a given probability of error is determined. Monte-Carlo simulations confirm the accuracy of the analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large MIMO systems with tens of antennas in each communication terminal using full-rate non-orthogonal space-time block codes (STBC) from Cyclic Division Algebras (CDA) can achieve the benefits of both transmit diversity as well as high spectral efficiencies. Maximum-likelihood (ML) or near-ML decoding of these large-sized STBCs at low complexities, however, has been a challenge. In this paper, we establish that near-ML decoding of these large STBCs is possible at practically affordable low complexities. We show that the likelihood ascent search (LAS) detector, reported earlier by us for V-BLAST, is able to achieve near-ML uncoded BER performance in decoding a 32x32 STBC from CDA, which employs 32 transmit antennas and sends 32(2) = 1024 complex data symbols in 32 time slots in one STBC matrix (i.e., 32 data symbols sent per channel use). In terms of coded BER, with a 16x16 STBC, rate-3/4 turbo code and 4-QAM (i.e., 24 bps/Hz), the LAS detector performs close to within just about 4 dB from the theoretical MIMO capacity. Our results further show that, with LAS detection, information lossless (ILL) STBCs perform almost as good as full-diversity ILL (FD-ILL) STBCs. Such low-complexity detectors can potentially enable implementation of high spectral efficiency large MIMO systems that could be considered in wireless standards.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we are concerned with low-complexity detection in large multiple-input multiple-output (MIMO) systems with tens of transmit/receive antennas. Our new contributions in this paper are two-fold. First, we propose a low-complexity algorithm for large-MIMO detection based on a layered low-complexity local neighborhood search. Second, we obtain a lower bound on the maximum-likelihood (ML) bit error performance using the local neighborhood search. The advantages of the proposed ML lower bound are i) it is easily obtained for MIMO systems with large number of antennas because of the inherent low complexity of the search algorithm, ii) it is tight at moderate-to-high SNRs, and iii) it can be tightened at low SNRs by increasing the number of symbols in the neighborhood definition. Interestingly, the proposed detection algorithm based on the layered local search achieves bit error performances which are quite close to this lower bound for large number of antennas and higher-order QAM. For e. g., in a 32 x 32 V-BLAST MIMO system, the proposed detection algorithm performs close to within 1.7 dB of the proposed ML lower bound at 10(-3) BER for 16-QAM (128 bps/Hz), and close to within 4.5 dB of the bound for 64-QAM (192 bps/Hz).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, we reported a low-complexity likelihood ascent search (LAS) detection algorithm for large MIMO systems with several tens of antennas that can achieve high spectral efficiencies of the order of tens to hundreds of bps/Hz. Through simulations, we showed that this algorithm achieves increasingly near SISO AWGN performance for increasing number of antennas in Lid. Rayleigh fading. However, no bit error performance analysis of the algorithm was reported. In this paper, we extend our work on this low-complexity large MIMO detector in two directions: i) We report an asymptotic bit error probability analysis of the LAS algorithm in the large system limit, where N-t, N-r -> infinity keeping N-t = N-r, where N-t and N-r are the number of transmit and receive antennas, respectively. Specifically, we prove that the error performance of the LAS detector for V-BLAST with 4-QAM in i.i.d. Rayleigh fading converges to that of the maximum-likelihood (ML) detector as N-t, N-r -> infinity keeping N-t = N-r ii) We present simulated BER and nearness to capacity results for V-BLAST as well as high-rate non-orthogonal STBC from Division Algebras (DA), in a more realistic spatially correlated MIMO channel model. Our simulation results show that a) at an uncoded BER of 10(-3), the performance of the LAS detector in decoding 16 x 16 STBC from DA with N-t = = 16 and 16-QAM degrades in spatially correlated fading by about 7 dB compared to that in i.i.d. fading, and 19) with a rate-3/4 outer turbo code and 48 bps/Hz spectral efficiency, the performance degrades by about 6 dB at a coded BER of 10(-4). Our results further show that providing asymmetry in number of antennas such that N-r > N-t keeping the total receiver array length same as that for N-r = N-t, the detector is able to pick up the extra receive diversity thereby significantly improving the BER performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a slow fading multiple-input multiple-output (MIMO) system with channel state information at both the transmitter and receiver. A well-known precoding scheme is based upon the singular value decomposition (SVD) of the channel matrix, which transforms the MIMO channel into parallel subchannels. Despite having low maximum likelihood decoding (MLD) complexity, this SVD precoding scheme provides a diversity gain which is limited by the diversity gain of the weakest subchannel. We therefore propose X- and Y-Codes, which improve the diversity gain of the SVD precoding scheme but maintain the low MLD complexity, by jointly coding information across a pair of subchannels. In particular, subchannels with high diversity gain are paired with those having low diversity gain. A pair of subchannels is jointly encoded using a 2 2 real matrix, which is fixed a priori and does not change with each channel realization. For X-Codes, these rotation matrices are parameterized by a single angle, while for Y-Codes, these matrices are left triangular matrices. Moreover, we propose X-, Y-Precoders with the same structure as X-, Y-Codes, but with encoding matrices adapted to each channel realization. We observed that X-Codes/Precoders are good for well-conditioned channels, while Y-Codes/Precoders are good for ill-conditioned channels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, a special class of complex designs called Training-Embedded Complex Orthogonal Designs (TE-CODs) has been introduced to construct single-symbol Maximum Likelihood decodable (SSD) distributed space-time block codes (DSTBCs) for two-hop wireless relay networks using the amplify and forward protocol. However, to implement DSTBCs from square TE-CODs, the overhead due to the transmission of training symbols becomes prohibitively large as the number of relays increase. In this paper, we propose TE-Coordinate Interleaved Orthogonal Designs (TE-CIODs) to construct SSD DSTBCs. Exploiting the block diagonal structure of TE-CIODs, we show that the overhead due to the transmission of training symbols to implement DSTBCs from TE-CIODs is smaller than that for TE-CODs. We also show that DSTBCs from TE-CIODs offer higher rate than those from TE-CODs for identical number of relays while maintaining the SSD and full-diversity properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Depth measures the extent of atom/residue burial within a protein. It correlates with properties such as protein stability, hydrogen exchange rate, protein-protein interaction hot spots, post-translational modification sites and sequence variability. Our server, DEPTH, accurately computes depth and solvent-accessible surface area (SASA) values. We show that depth can be used to predict small molecule ligand binding cavities in proteins. Often, some of the residues lining a ligand binding cavity are both deep and solvent exposed. Using the depth-SASA pair values for a residue, its likelihood to form part of a small molecule binding cavity is estimated. The parameters of the method were calibrated over a training set of 900 high-resolution X-ray crystal structures of single-domain proteins bound to small molecules (molecular weight < 1.5 KDa). The prediction accuracy of DEPTH is comparable to that of other geometry-based prediction methods including LIGSITE, SURFNET and Pocket-Finder (all with Matthew's correlation coefficient of similar to 0.4) over a testing set of 225 single and multi-chain protein structures. Users have the option of tuning several parameters to detect cavities of different sizes, for example, geometrically flat binding sites. The input to the server is a protein 3D structure in PDB format. The users have the option of tuning the values of four parameters associated with the computation of residue depth and the prediction of binding cavities. The computed depths, SASA and binding cavity predictions are displayed in 2D plots and mapped onto 3D representations of the protein structure using Jmol. Links are provided to download the outputs. Our server is useful for all structural analysis based on residue depth and SASA, such as guiding site-directed mutagenesis experiments and small molecule docking exercises, in the context of protein functional annotation and drug discovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper compares and analyzes the performance of distributed cophasing techniques for uplink transmission over wireless sensor networks. We focus on a time-division duplexing approach, and exploit the channel reciprocity to reduce the channel feedback requirement. We consider periodic broadcast of known pilot symbols by the fusion center (FC), and maximum likelihood estimation of the channel by the sensor nodes for the subsequent uplink cophasing transmission. We assume carrier and phase synchronization across the participating nodes for analytical tractability. We study binary signaling over frequency-flat fading channels, and quantify the system performance such as the expected gains in the received signal-to-noise ratio (SNR) and the average probability of error at the FC, as a function of the number of sensor nodes and the pilot overhead. Our results show that a modest amount of accumulated pilot SNR is sufficient to realize a large fraction of the maximum possible beamforming gain. We also investigate the performance gains obtained by censoring transmission at the sensors based on the estimated channel state, and the benefits obtained by using maximum ratio transmission (MRT) and truncated channel inversion (TCI) at the sensors in addition to cophasing transmission. Simulation results corroborate the theoretical expressions and show the relative performance benefits offered by the various schemes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Growing concern over the status of global and regional bioenergy resources has necessitated the analysis and monitoring of land cover and land use parameters on spatial and temporal scales. The knowledge of land cover and land use is very important in understanding natural resources utilization, conversion and management. Land cover, land use intensity and land use diversity are land quality indicators for sustainable land management. Optimal management of resources aids in maintaining the ecosystem balance and thereby ensures the sustainable development of a region. Thus sustainable development of a region requires a synoptic ecosystem approach in the management of natural resources that relates to the dynamics of natural variability and the effects of human intervention on key indicators of biodiversity and productivity. Spatial and temporal tools such as remote sensing (RS), geographic information system (GIS) and global positioning system (GPS) provide spatial and attribute data at regular intervals with functionalities of a decision support system aid in visualisation, querying, analysis, etc., which would aid in sustainable management of natural resources. Remote sensing data and GIS technologies play an important role in spatially evaluating bioresource availability and demand. This paper explores various land cover and land use techniques that could be used for bioresources monitoring considering the spatial data of Kolar district, Karnataka state, India. Slope and distance based vegetation indices are computed for qualitative and quantitative assessment of land cover using remote spectral measurements. Differentscale mapping of land use pattern in Kolar district is done using supervised classification approaches. Slope based vegetation indices show area under vegetation range from 47.65 % to 49.05% while distance based vegetation indices shoes its range from 40.40% to 47.41%. Land use analyses using maximum likelihood classifier indicate that 46.69% is agricultural land, 42.33% is wasteland (barren land), 4.62% is built up, 3.07% of plantation, 2.77% natural forest and 0.53% water bodies. The comparative analysis of various classifiers, indicate that the Gaussian maximum likelihood classifier has least errors. The computation of talukwise bioresource status shows that Chikballapur Taluk has better availability of resources compared to other taluks in the district.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Urbanisation is the increase in the population of cities in proportion to the region's rural population. Urbanisation in India is very rapid with urban population growing at around 2.3 percent per annum. Urban sprawl refers to the dispersed development along highways or surrounding the city and in rural countryside with implications such as loss of agricultural land, open space and ecologically sensitive habitats. Sprawl is thus a pattern and pace of land use in which the rate of land consumed for urban purposes exceeds the rate of population growth resulting in an inefficient and consumptive use of land and its associated resources. This unprecedented urbanisation trend due to burgeoning population has posed serious challenges to the decision makers in the city planning and management process involving plethora of issues like infrastructure development, traffic congestion, and basic amenities (electricity, water, and sanitation), etc. In this context, to aid the decision makers in following the holistic approaches in the city and urban planning, the pattern, analysis, visualization of urban growth and its impact on natural resources has gained importance. This communication, analyses the urbanisation pattern and trends using temporal remote sensing data based on supervised learning using maximum likelihood estimation of multivariate normal density parameters and Bayesian classification approach. The technique is implemented for Greater Bangalore – one of the fastest growing city in the World, with Landsat data of 1973, 1992 and 2000, IRS LISS-3 data of 1999, 2006 and MODIS data of 2002 and 2007. The study shows that there has been a growth of 466% in urban areas of Greater Bangalore across 35 years (1973 to 2007). The study unravels the pattern of growth in Greater Bangalore and its implication on local climate and also on the natural resources, necessitating appropriate strategies for the sustainable management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A construction of a new family of distributed space time codes (DSTCs) having full diversity and low Maximum Likelihood (ML) decoding complexity is provided for the two phase based cooperative diversity protocols of Jing-Hassibi and the recently proposed Generalized Non-orthogonal Amplify and Forward (GNAF) protocol of Rajan et al. The salient feature of the proposed DSTCs is that they satisfy the extra constraints imposed by the protocols and are also four-group ML decodable which leads to significant reduction in ML decoding complexity compared to all existing DSTC constructions. Moreover these codes have uniform distribution of power among the relays as well as in time. Also, simulations results indicate that these codes perform better in comparison with the only known DSTC with the same rate and decoding complexity, namely the Coordinate Interleaved Orthogonal Design (CIOD). Furthermore, they perform very close to DSTCs from field extensions which have same rate but higher decoding complexity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Space-Time Block Code (STBC) in K symbols (variables) is called g-group decodable STBC if its maximum-likelihood decoding metric can be written as a sum of g terms such that each term is a function of a subset of the K variables and each variable appears in only one term. In this paper we provide a general structure of the weight matrices of multi-group decodable codes using Clifford algebras. Without assuming that the number of variables in each group to be the same, a method of explicitly constructing the weight matrices of full-diversity, delay-optimal g-group decodable codes is presented for arbitrary number of antennas. For the special case of Nt=2a we construct two subclass of codes: (i) A class of 2a-group decodable codes with rate a2(a−1), which is, equivalently, a class of Single-Symbol Decodable codes, (ii) A class of (2a−2)-group decodable with rate (a−1)2(a−2), i.e., a class of Double-Symbol Decodable codes. Simulation results show that the DSD codes of this paper perform better than previously known Quasi-Orthogonal Designs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Generalized Distributive Law (GDL) is a message passing algorithm which can efficiently solve a certain class of computational problems, and includes as special cases the Viterbi's algorithm, the BCJR algorithm, the Fast-Fourier Transform, Turbo and LDPC decoding algorithms. In this paper GDL based maximum-likelihood (ML) decoding of Space-Time Block Codes (STBCs) is introduced and a sufficient condition for an STBC to admit low GDL decoding complexity is given. Fast-decoding and multigroup decoding are the two algorithms used in the literature to ML decode STBCs with low complexity. An algorithm which exploits the advantages of both these two is called Conditional ML (CML) decoding. It is shown in this paper that the GDL decoding complexity of any STBC is upper bounded by its CML decoding complexity, and that there exist codes for which the GDL complexity is strictly less than the CML complexity. Explicit examples of two such families of STBCs is given in this paper. Thus the CML is in general suboptimal in reducing the ML decoding complexity of a code, and one should design codes with low GDL complexity rather than low CML complexity.