72 resultados para Jones, Christopher, 1570 (ca.)-1622.
Resumo:
Three new aluminoborates having the composition MAl3BO7, where M = Ca,Sr or Ba, have been prepared. X-ray diffraction data indicate that all the phases are monoclinic, with close structural similarity to the meta stable aluminate, SrAl4O7. These aluminoborates are good host lattices for Eu2+ luminescence. The emission spectra show multiple bands in the blue region, corresponding to two inequivalent sites in each case, with one of them having quantum efficiency greater-than or equivalent to 75%. In the case of SrAl3BO7:Eu2+, the d–f band emission dominates at 300 K whereas at 77 K both d–f band and f–f line emissions are observed. Efficient Eu2+→Mn2+ energy transfer is observed in MAl3BO7 leading to strong green emission of Mn2+in the tetrahedral sites.aluminoborates; europium
Resumo:
An analysis of the base pair doublet geometries in available crystal structures indicates that the often reported intrinsic curvature of DNA containing oligo-(d(A).d(T)) tracts may also depend on the nature of the flanking sequences. The presence of CA/TG doublet in particular at the 5' end of these tracts is expected to enhance their intrinsic bending property. To test this proposition, three oligonucleotides, d(GAAAAACCCCCC), d(CCCCCCAAAAAG), d(GAAAAATTTTTC), and their complementary sequences were synthesized to study the effect of various flanking sequences, at the 5' and 3' ends of the A-tracts, on the curvature of DNA in solution. An analysis of the polyacrylamide gel electrophoretic mobilities of these sequences under different conditions of salts and temperatures (below their melting points) clearly showed that the oligomer with CA/TG sequence in the center was always more retarded than the oligomer with AC/GT sequence, as well as the oligomer with AT/AT sequence. Hydroxyl radical probing of the sequences with AC/GT and CA/TG doublet junctions gives a similar cutting pattern in the A-tracts, which is quite different from that in the C-tracts, indicating that the oligo(A)-tracts have similar structures in the two oligomers. KMnO4 probing shows that the oligomer with a CA/TG doublet junction forms a kink that is responsible for its inherent curvature and unusual electrophoretic mobility. UV melting shows a reduced thermal stability of the duplex with CA/TG doublet junction, and circular dichroism (CD) studies indicate that a premelting transition occurs in the oligomer with CA/TG doublet step before global melting but not in the oligomer with AC/GT doublet step, which may correspond to thermally induced unbending of the oligomer. These observations indicate that the CA/TG doublet junction at the 5' end of the oligo(A)-tract has a crucial role in modulating the overall curvature in DNA.
Resumo:
The effect of substitution of calcium on the anisotropic axial thermal expansion of cordierite was investigated by using a high-temperature X-ray diffraction technique. The compositions were prepared by the sol–gel route. In the Mg2-xCax-Al4Si5O18 system, single-phase cordierite can be prepared for x up to 0.5. Thermal expansion anisotropy (αa–αc) of cordierites reduces progressively by the substitution of increasing amounts of Ca for Mg.
Resumo:
An analysis of the base pair doublet geometries in available crystal structures indicates that the often reported intrinsic curvature of DNA containing oligo-(d(A).d(T)) tracts may also depend on the nature of the flanking sequences. The presence of CA/TG doublet in particular at the 5' end of these tracts is expected to enhance their intrinsic bending property. To test this proposition, three oligonucleotides, d(GAAAAACCCCCC), d(CCCCCCAAAAAG), d(GAAAAATTTTTC), and their complementary sequences were synthesized to study the effect of various flanking sequences, at the 5' and 3' ends of the A-tracts, on the curvature of DNA in solution. An analysis of the polyacrylamide gel electrophoretic mobilities of these sequences under different conditions of salts and temperatures (below their melting points) clearly showed that the oligomer with CA/TG sequence in the center was always more retarded than the oligomer with AC/GT sequence, as well as the oligomer with AT/AT sequence. Hydroxyl radical probing of the sequences with AC/GT and CA/TG doublet junctions gives a similar cutting pattern in the A-tracts, which is quite different from that in the C-tracts, indicating that the oligo(A)-tracts have similar structures in the two oligomers. KMnO4 probing shows that the oligomer with a CA/TG doublet junction forms a kink that is responsible for its inherent curvature and unusual electrophoretic mobility. UV melting shows a reduced thermal stability of the duplex with CA/TG doublet junction, and circular dichroism (CD) studies indicate that a premelting transition occurs in the oligomer with CA/TG doublet step before global melting but not in the oligomer with AC/GT doublet step, which may correspond to thermally induced unbending of the oligomer. These observations indicate that the CA/TG doublet junction at the 5' end of the oligo(A)-tract has a crucial role in modulating the overall curvature in DNA.
Resumo:
We have examined the stability of the ferromagnetic (FM) state in CaRuO3 and SrRuO3 as a function of the GdFeO3 distortion. Model calculations predict the dependence of the FM transition temperature (T-c) on the rotation angle theta to vary as cos(2)(2 theta) for e(g)-electron systems. However, here, we find an initial increase and then the expected decrease. Furthermore, a much faster decrease is found than predicted for e(g)-electron systems. Considering the specific case of CaRuO3, a larger deviation of the Ru-O-Ru angle from 180 degrees in CaRuO3 as compared to SrRuO3 should result in a more reduced bandwidth, thereby making the former more correlated. The absence of long-range magnetic order in the more correlated CaRuO3 is traced to the strong collapse of various exchange interaction strengths that arises primarily from the volume reduction and increased distortion of the RuO6 octahedra network that accompanies the presence of a smaller ion at the A site.
Resumo:
With construction of a thermochemical energy conversion prototype system to store solar heat, thermal dissociation of pellets of Ca(OH)2 and hydration of CaO have been investigated in some detail for its application to the system. The inorganic substance is very attractive as a material for long term heat storage, but molar density changes associated with the reaction are fairly large. Therefore, this factor has been taken into account in the kinetic equation. The importance of additives and pellet size has been discussed considering reactivity and strength of pellets. An analysis has been attempted when chemical reaction is important. The deformation of pellets was observed during hydration.
Resumo:
Following considerations of geometry and the similarity between chromate and carbonate groups in terms of size and charge, we have investigated the possibility of replacing the two-coordinate Cu-I in superconducting lead cuprates of the general formula Pb2Sr2(Ca, Y)CU3O8 by Cr. A high-resolution electron microscopy study coupled with energy dispersive X-ray analysis on small crystals of the title phases suggests that between 10 and 15% of the Cu-I can be replaced by Cr. While from the present structural study using HRTEM and Rietveld refinement of X-ray powder data we are unable to precisely obtain the oxidation state and oxygen coordination of Cr, we suggest in analogy with Cr substitution in other similar cuprates that in the title phases (CuO2)-O-I rods are partially replaced by tetrahedral CrO42- groups. Infrared spectroscopy supports the presence of CrO42- groups. The phases Pb1.75Sr2Ca0.2Y0.8O8+delta and Pb1.75Sr2Ca0.2Y0.8CCu2.85Cr0.15O8+delta are superconducting as-prepared, but the substitution of Cr for Cu-I results in a decrease of the Te as well as the superconducting volume fraction. (C) 1996 Academic Press, lnc.
Resumo:
In order to understand the translational and rotational motion in dense molecular liquids, detailed molecular dynamics simulations of Lennard-Jones ellipsoids have been carried out for three different values of the aspect ratio kappa. For ellipsoids with an aspect ratio equal to 2, the product of the translational diffusion coefficient (D-T) and the average orientational correlation time of the l-th rank harmonics (tau(lR)), converges to a nearly constant value at high density. Surprisingly, this density independent value of D-T tau(lR) is within 5% of the hydrodynamic prediction with the slip boundary condition. This is despite the fact that both D-T and tau(lR) themselves change nearly by an order of magnitude in the density range considered, and the rotational correlation function itself is strongly nonexponential. For small aspect ratios (kappa less than or equal to 1.5), the rotational correlation function remains largely Gaussian even at a very large density, while for a large aspect ratio (kappa greater than or equal to 3), the transition to the nematic liquid-crystalline phase precludes the hydrodynamic regime. Thus, the rotational dynamics of ellipsoids show great sensitivity to the aspect ratio. At low density, tau(lR) goes through a minimum value, indicating the role of interactions in enhancing the rate of orientational relaxation. (C) 1997 American Institute of Physics. [S0021-9606(97)50142-5].
Resumo:
Compounds of the type, LaAFeNbO(6) (A = Ca Sr) have been synthesized to study the electrical and magnetic properties and to examine valence degeneracy. The results show that valence degeneracy is not operative and the compounds are insulating. Magnetic susceptibility data show that part of the Fe is in Fs(2+) state, thus oxidizing part of Nb4+ to Nb5+ by an internal redox mechanism. The presence of mixed valent Fe is confirmed by Mossbauer spectra. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Inelastic light scattering studies on a single crystal of electron-doped Ca(Fe0.95Co0.05)(2)As-2 superconductor, covering the tetragonal-to-orthorhombic structural transition as well as the magnetic transition at T-SM similar to 140 K and the superconducting transition temperature T-c similar to 23 K, reveal evidence for superconductivity-induced phonon renormalization. In particular, the phonon mode near 260 cm(-1) shows hardening below T-c, signaling its coupling with the superconducting gap. All three Raman active phonon modes show anomalous temperature dependence between room temperature and T-c, i.e. the phonon frequency decreases with lowering temperature. Further, the frequency of one of the modes shows a sudden change in temperature dependence at TSM. Using first-principles density functional theory based calculations, we show that the low temperature phase (T-c < T < T-SM) exhibits short-ranged stripe antiferromagnetic ordering, and estimate the spin-phonon couplings that are responsible for these phonon anomalies.
Resumo:
Grain size has marked effects on charge-ordering and other properties of Nd(0.5)A(0.5)MnO(3) (A=Ca or Sr). Thus, the anti-ferromagnetic (AFM) transition in Nd0.5Ca0.5MnO3 is observed distinctly only in samples sintered at 1273 K or higher. The sample with a small grain size (sintered at 1173 K) shows evidence for greater ferromagnetic (FM) interaction at low temperatures, probably due to phase segregation. The FM transition as well as the charge-ordering transition in Nd0.5Sr0.5MnO3 becomes sharper in samples sintered at 1273 K or higher. The sample sintered at 1173 K does not show the AFM-CO transition around 150 K and is FM down to low temperatures; the apparent T-c-T-co gap decreases with the increase in the grain size. The samples sintered at lower temperatures (<1673 K) show evidence for greater segregation of the AFM and FM domains. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We investigate the electronic structure of Ca1-xSrxVO3 using photoemission spectroscopy. Core level spectra establish an electronic phase separation at the surface, leading to a distinctly different surface electronic structure compared to the bulk. Analysis of the photoemission spectra of this system allowed us to separate the surface and bulk contributions. These results help us to understand properties related to two vastly differing energy scales, namely the low-energy scale of thermal excitations ( $\sim\!k_{\rm B}T$) and the high-energy scale related to Coulomb and other electronic interactions.
Resumo:
Recently, there has been growing interest in Ca modified BaTiO3 structures due to their larger electro-optic coefficients for their use in optical storage of information over conventional BaTiO3 crystals. Barium Calcium Titanate (BCT) shows promising applications in advanced laser systems, optical interconnects and optical storage devices. BaTiO3 thin films of varied Ca (3 at. % - 15 at. %) doping were deposited using pulsed laser ablation (KrF excimer laser) technique over Pt/Si substrates. The stoichiometric and the compositional analysis were carried out using EDAX and SIMS. The dielectric studies were done at the frequency regime of 40 Hz to 100 kHz at different ambient temperatures from 200 K to 600 K. The BCT thin films exhibited diffuse phase transition, which was of a typical non lead relaxor behavior and had high dielectric constant and low dielectric loss. The phase transition for the different compositions of BCT thin films was near the room temperature, showing a marked departure from the bulk phase transition. The C - V and the hysteresis behavior confirmed the ferroelectric nature below the phase transition and paraelectric at the room temperature.
Resumo:
Thin films of ferroelectric ABi2Ta2O9 bismuth-layered structure, where A = Ba, Sr and Ca, were prepared by pulsed laser deposition technique on Pt/TiO2/SiO2/Si(100) substrates. The influence of substrate temperature between 500 to 750°C, and oxygen partial pressure 100-300 mTorr, on the structural and electrical properties of the films was investigated. The films deposited above 650°C substrate temperature showed complete Aurivillius layered structure. Films annealed at 750°C for 1h in oxygen atmosphere have exhibited better electrical properties. Atomic force microscopy study of surface topography shows that the films grown at lower temperature has smaller grains and higher surface roughness. This paper discusses the pronounced influence of A-site cation substitution on the structural and ferroelectric properties with the aid of Raman spectroscopy, X-ray diffraction and electrical properties. The degradation of ferroelectric properties with Ba and Ca substitution at A-sites is attributed to the higher structural distortion caused by changing tolerance factor. A systematic proportionate variation of coercive field is attributed to electronegativity difference of A-site cations.
Resumo:
We have synthesized ceramics of A2FeReO6 double-perovskites A2FeReO6 (A=Ba, Ca). Structural characterizations indicate a cubic structure with a=8.0854(1) Å for Ba2FeReO6 and a distorted monoclinic symmetry with a=5.396(1) Å, b=5.522(1) Å, c=7.688(2) Å and β=90.4° for Ca2FeReO6. The barium compound is metallic from 5K to 385K, i.e. no metal-insulator transition has been seen up to 385K, and the calcium compound is semiconducting from 5K to 385K. Magnetization measurements show a ferrimagnetic behavior for both materials, with Tc =315 K for Ba2FeReO6 and above 385K for Ca2FeReO6. At 5K we observed, only for Ba2FeReO6, a negative magnetoresistance of 10% in a magnetic field of 5T. Electrical, magnetic and thermal properties are discussed and compared to those of the analogous compounds Sr2Fe(Mo,Re)O6 recently studied.