379 resultados para Intrinsic reaction coordinate calculations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of the helical morphology in monolayers and bilayers of chiral amphiphilic assemblies is believed to be driven at least partly by the interactions at the chiral centers of the amphiphiles. However, a detailed microscopic understanding of these interactions and their relation with the helix formation is still not clear. In this article a study of the molecular origin of the chirality-driven helix formation is presented by calculating, for the first time, the effective pair potential between a pair of chiral molecules. This effective potential depends on the relative sizes of the groups attached to the two chiral centers, on the orientation of the amphiphile molecules, and also on the distance between them. We find that for the mirror-image isomers (in the racemic modification) the minimum energy conformation is a nearly parallel alignment of the molecules. On the other hand, the same for a pair of molecules of one kind of enantiomer favors a tilt angle between them, thus leading to the formation of a helical morphology of the aggregate. The tilt angle is determined by the size of the groups attached to the chiral centers of the pair of molecules considered and in many cases predicted it to be close to 45 degrees. The present study, therefore, provides a molecular origin of the intrinsic bending force, suggested by Helfrich (J. Chem. Phys. 1986, 85, 1085-1087), to be responsible for the formation of helical structure. This effective potential may explain many of the existing experimental results, such as the size and the concentration dependence of the formation of helical morphology. It is further found that the elastic forces can significantly modify the pitch predicted by the chiral interactions alone and that the modified real pitch is close to the experimentally observed value. The present study is expected to provide a starting point for future microscopic studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report ab initio calculations for the band dispersions and total as well as partial densities of states for vacancy ordered, clustered spinels, GaMo4S8 and GaV4S8. Results are presented for the high temperature cubic phase for both compounds. Additionally, we discuss results of similar calculations for GaMo4S8 in an idealized cubic structure, as well as the nonmagnetic and the ferromagnetic states of the low temperature rhombohedral structure. Comparison of these results allows us to discuss the unusual aspects of the electronic structure of this interesting class of compounds, and provide estimates of the crystal-field and exchange splitting strengths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reaction of [M2Cl2(mu-Cl)(2)(PR3)(2)] (M=Pd or Pt; PR3=PEt3, PBu3, PMe2Ph, PMePh2) with lithium amidinate or sodium triazenide gave binuclear complexes containing amidinato- or triazenido-bridges, [M2Cl2(mu-ArNENAr)(2)(PR3)(2)] (E=CH, CMe or N). These complexes were characterized by elemental analysis and NMR (H-1, P-31 or Pt-195) data. The structures of two complexes, [(PdCl2)-Cl-2(mu-PhNC(Me)NPh)(2)(PMe2Ph)(2)] (10) and [Pt2Cl2(mu-PhNNNPh)(2)(PEt3)(2)] (11) were established by single crystal X-ray structural analyses. The Pt-195 NMR data Show coupling between two metal centers in the cis triazenido-bridged complex. The corresponding amidinate bridged complex does not show coupling. The role of the bridging ligand in mediating interaction between the metal centers is probed through Extended Huckel Theory (EHT) calculations. It is suggested that M-M interactions are primarily affected by the bridging ligands

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment of bromoketals 2, derived from allyl alcohols 1, with tributyltin chloride, sodium cyanoborohydride and AIBN furnishes the tetrahydrofurannulated products 3 via a 5-exo-trig radical cyclisation reaction followed by reductive cleavage of ketal 4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxidative bromination of phenol red to its tetrabromo derivative, bromophenol blue, required vanadate in addition to H2O2 when carried out in the pH range of 5-7. Excess H2O2, with ratio of H2O2:vanadate of 2:1 and above, prevented the reaction. Diperoxovanadate, known to be formed in such reaction mixtures, was ineffective by itself and needed uncomplexed vanadate (V-v) or vanadyl (V-iv) to support bromination. Bromide-assisted reduction of the excess vanadate to vanadyl appeared to be an essential secondary reaction. In the absence of phenol red oxygen was released, and concomitantly bromide was oxidized to a form competent to brominate phenol red added after termination of oxygen release. These findings indicated participation of reactions leading to an intermediate derived from vanadyl and diperoxovanadate, previously described from this laboratory (Arch. Biochem. Biophys. 316, 319-326, 1995). Continuous bromination of phenol red occurred when glucose oxidase-glucose system was used as a source of continuous flow of H2O2. A scheme of reactions involving peroxovanadates (mono-, di-, mu-, and bromo-) is proposed for the formation and utilization of an active brominating species and for the recycling of the product, mono-peroxovanadate, by H2O2, which explains the catalytic role of vanadium in the bromoperoxidation reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A copper(II) complex of dipyridophenazine, viz., [Cu(dppz)(2)(H2O)](ClO4)(2) (I), has been prepared and structurally characterized by X-ray crystallography. The crystal structure of the complex shows a five-coordinate structure in which two N,N-donor dipyridophenazine (dppz) and one aqua ligand bind to the copper(II) center giving Cu-O and Cu-N bond distances in the range of 1.981(6) to 2.043(6) angstrom. The ESI-MS spectrum of 1 in MeCN shows a peak at m/z value of 313 (100%) indicating the dissociation of the aqua ligand in the solution phase. The complex is one-electron paramagnetic (mu(eff), 1.86 mu(B)). It displays a quasi-reversible Cu(II)/Cu(I) redox process at 0.096 V. The complex is an avid binder to CT DNA giving a binding constant value of 3.5 x 10(5) M-1. It shows significant hydrolytic cleavage of supercoiled pUC19 DNA in dark ill the absence of any external agents. The complex exhibits chemical nuclease activity oil treatment with 3-mercaptopropionic acid as a reducing agent forming hydroxyl radicals. Complex 1 is a model synthetic nuclease and hydrolase showing both modes of DNA cleavage under different reaction conditions. The DNA cleavage activity of 1 is significantly better than its phen analogue but similar to that of the bis-dpq complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the first comprehensive report on the calculation of segment size, which signifies the asic unit of flow in long chain plasticizing liquids, by a novel multi-pronged approach. Unlike,low molecular weight liquids and high polymer melts these complex long chain liquids encompasses the least understood domain of the liquid state. In the present work the flow behaviour of carboxylate ester (300-900 Da) has been explained through segmental motion taking into account the independence of molecular weight region. The segment size have been calculated by various methods based on satistical thermodynamics, molecular dynamics and group additivity nd their merits analysed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoporous structures with high active surface areas are critical for a variety of applications. Here, we present a general templateless strategy to produce such porous structures by controlled aggregation of nanostructured subunits and apply the principles for synthesizing nanoporous Pt for electrocatalytic oxidation of methanol. The nature of the aggregate produced is controlled by tuning the electrostatic interaction between surfactant-free nanoparticles in the solution phase. When the repulsive force between the particles is very large, the particles are stabilized in the solution while instantaneous aggregation leading to fractal-like structures results when the repulsive force is very low. Controlling the repulsive interaction to an optimum, intermediate value results in the formation of compact structures with very large surface areas. In the case of Pt, nanoporous clusters with an extremely high specific surface area (39 m(2)/g) and high activity for methanol oxidation have been produced. Preliminary investigations indicate that the method is general and can be easily extended to produce nanoporous structures of many inorganic materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enantiospecific synthesis of the tricyclic core structure present in the biologically active natural products tricycloillicinone, ialibinones, and takaneones, starting from the readily available campholenaldehyde employing a transannular RCM reaction as the key step, has been accomplished.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reaction of W(CO)(6) with 1-alkyl-2-(naphthyl-alpha-azo)imidazole (alpha-NaiR) has synthesized [W(CO)(5)(alpha-NaiR-N)] (alpha-NaiR-N refers to the monodentate imidazole-N donor ligand) at room temperature. The structure of[W(CO)(5)(alpha-NaiMe-N)] shows a monodentate imidazole-N coordination of 1-methyl-2-(naphthyl-alpha-azo)imidazole (alpha-NaiMe). The complexes are characterized by elemental, mass and other spectroscopic data (IR, UV-Vis, NMR). On refluxing in THF at 323 K, [W(CO)(5)(alpha-NaiR-N)] undergoes decarbonylation to give [W(CO)(4)(alpha-NaiR-N,N')] (alpha-NaiR-N,N' refers to the imidazole-N(N), azo-N(N') bidentate chelator). Cyclic voltammetry shows metal oxidation (W-0/W-1) and ligand reductions (azo/azo(-), azo(-)/azo(=)). The redox and electronic properties are explained by theoretical calculations using an optimized geometry. DFT computation of [W(CO)(5)(alpha-NaiMe-N)] suggests that the major contribution to the HOMO/HOMO - 1 come from W cl-orbitals and the orbitals of CO. The LUMOs are occupied by alpha-NaiMe functions. The back bonding interaction thus originates from the W(CO)(n) moiety to the LUMO of alpha-NaiR. A TD-DFT calculation has ascribed that HOMO/HOMO - 1 -> LUMO is a mixture of metal-to-ligand and ligand-to-ligand charge transfer underlying the CO -> azoimine contribution. The complexes show emission spectra at room temperature. [W(CO)(4)(alpha-NaiR-N,N')] shows a higher fluorescence quantum yield (phi = 0.05-0.07) than [W(CO)(5)(alpha-NaiR-N)] (phi = 0.01-0.02). (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction of the title compound (1a) with anhydrous MeOH-HCl gave 2-endo-(2,6-dimethoxyphenyl)-2-exo-methyl-5-methylbicyclo[3.2.1]octane-6,8-dione (3a), 1,5,14-timethoxy-5,8-seco-6,7-dinorestra-1,3,5(10),9(11)-tetraen-17-one (4), 1,5-dimethoxy-5,8-seco-6,7-dinorestra-1,3,5(10),8,14-pentaen-17-one (5), and 3,4,5,6-tetrahydro-2,7-dimethoxy-3,6-dimethyl-3,2,6-(13-oxopropan[1]yI[3]ylidene)-2H-1-benzoxocin (6). Structures assigned to compounds (3a), (4), and (6) are based on spectral data. The exo-tricyclic acetal structure (6) was further confirmed by the analysis of the 1H n.m.r. spectra of the isomeric alcohols (11) and (12), obtained by sodium borohydride reduction of (6).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vilsmeier reaction on a few representative 6- and 7-methoxy-1- and 2-tetralones has been investigated. While 1-tetralones give the corresponding 1-chloro-2-formyl3, 4-dihydronaphthalenes, the 2-tetralones afford 1,3-bisformyl-2-chloronaphthalenes. Spectral characteristics of all the products obtained are given and a mechanistic proposal has been made to explain the observed chlorobisformylation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the unexplored, yet important aspects of the biology of acyl carrier proteins (ACPs) is the self-acylation and malonyl transferase activities dedicated to ACPs in polyketide synthesis. Our studies demonstrate the existence of malonyl transferase activity in ACPs involved in type II fatty acid biosynthesis from Plasmodium falciparum and Escherichia coli. We also show that the catalytic malonyl transferase activity is intrinsic to an individual ACP. Mutational analysis implicates an arginine/lysine in loop II and an arginine/glutamine in helix III as the catalytic residues for transferase function. The hydrogen bonding properties of these residues appears to be indispensable for the transferase reaction. Complementation of fabD(Ts) E. coli highlights the putative physiological role of this process. Our studies thus shed light on a key aspect of ACP biology and provide insights into the mechanism involved therein.