38 resultados para Internet-centric Systems in Hydroinformatics
Resumo:
Following an invariant-imbedding approach, we obtain analytical expressions for the ensemble-averaged resistance (ρ) and its Sinai’s fluctuations for a one-dimensional disordered conductor in the presence of a finite electric field F. The mean resistance shows a crossover from the exponential to the power-law length dependence with increasing field strength in agreement with known numerical results. More importantly, unlike the zero-field case the resistance distribution saturates to a Poissonian-limiting form proportional to A‖F‖exp(-A‖F‖ρ) for large sample lengths, where A is constant.
Resumo:
We report experimental observation of an unexpectedly large thermopower in mesoscopic two-dimensional (2D) electron systems in GaAs/AlGaA heterostructures at sub-Kelvin temperatures and zero magnetic field. Unlike conventional nonmagnetic high-mobility 2D systems, the thermopower in our devices increases with decreasing temperature below 0.3 K, reaching values in excess of 100 mu V/K, thus exceeding the free electron estimate by more than 2 orders of magnitude. With support from a parallel study of the local density of states, we suggest such a phenomenon to be linked to intrinsic localized states and many-body spin correlations in the system.
Resumo:
The transition parameters for the freezing of two one-component liquids into crystalline solids are evaluated by two theoretical approaches. The first system considered is liquid sodium which crystallizes into a body-centered-cubic (bcc) lattice; the second system is the freezing of adhesive hard spheres into a face-centered-cubic (fcc) lattice. Two related theoretical techniques are used in this evaluation: One is based upon a recently developed bifurcation analysis; the other is based upon the theory of freezing developed by Ramakrishnan and Yussouff. For liquid sodium, where experimental information is available, the predictions of the two theories agree well with experiment and each other. The adhesive-hard-sphere system, which displays a triple point and can be used to fit some liquids accurately, shows a temperature dependence of the freezing parameters which is similar to Lennard-Jones systems. At very low temperature, the fractional density change on freezing shows a dramatic increase as a function of temperature indicating the importance of all the contributions due to the triplet direction correlation function. Also, we consider the freezing of a one-component liquid into a simple-cubic (sc) lattice by bifurcation analysis and show that this transition is highly unfavorable, independent of interatomic potential choice. The bifurcation diagrams for the three lattices considered are compared and found to be strikingly different. Finally, a new stability analysis of the bifurcation diagrams is presented.
Resumo:
Abstract is not available.
Resumo:
This paper recasts the multiple data path assignment problem solved by Torng and Wilhelm by the dynamic programming method [1] into a minimal covering problem following a switching theoretic approach. The concept of bus compatibility for the data transfers is used to obtain the various ways of interconnecting the circuit modules with the minimum number of buses that allow concurrent data transfers. These have been called the feasible solutions of the problem. The minimal cost solutions are obtained by assigning weights to the bus-compatible sets present in the feasible solutions. Minimization of the cost of the solution by increasing the number of buses is also discussed.
Resumo:
This paper recasts the multiple data path assignment problem solved by Torng and Wilhelm by the dynamic programming method [1] into a minimal covering problem following a switching theoretic approach. The concept of bus compatibility for the data transfers is used to obtain the various ways of interconnecting the circuit modules with the minimum number of buses that allow concurrent data transfers. These have been called the feasible solutions of the problem. The minimal cost solutions are obtained by assigning weights to the bus-compatible sets present in the feasible solutions. Minimization of the cost of the solution by increasing the number of buses is also discussed.
Resumo:
Modification of chemical reactions through the use of constrained and/or organized media has attracted a great deal of attention recently. Results from our laboratory in this direction which include a study of photochemical reactions in solid state and in cyclodextrins are presented here. A study of solid state photochemical behavior of coumarins has provided information regarding subtler aspects of topochemical postulates of photodimerization. Results pertaining to geometrical criteria for photodimerization and "chloro" as a crystal engineering group are discussed. As a part of an attempt to correlate chemical reactivity with molecular packing in the solid state, photooxidation of diarylthioketones in the solid state has been investigated. The observed differences in the reactivity of these crystals are rationalized in terms of crystal packing. Though cyclodextrins have been extensively studied, very few photochemical reactions involving molecules complexed to cyclodextrins have been examined. In this connection, the utility of cyclodextrins in bringing about selectivity in photochemical reactions through the study of excited state behavior of olefins and aryl alkyl ketones has been demonstrated in our laboratory.