46 resultados para Instructor Tool
Resumo:
Design of the required tool is a key and important parameter in the technique of friction stir welding (FSW). This is so because tool design does exert a close control over the quality of the weld. In an attempt to optimize tool design and its selection, it is essential and desirable to understand the mechanisms governing the formation of the weld. In this research study, few experiments were conducted to systematically analyze the intrinsic mechanisms governing the formation of the weld and to effectively utilize the analysis to establish a logical basis for design of the tool. For this purpose, the experiments were conducted using different geometries of the shoulder and pin of the rotating tool in such a way that only tool geometry had an intrinsic influence on formation of the weld. The results revealed that for a particular diameter of the pin there is an optimum diameter of the shoulder. Below this optimum shoulder diameter, the weld does not form while above the optimum diameter the overall symmetry of the weld is lost. Based on experimental results, a mechanism for the formation of friction stir weld is proposed. A synergism of the experimental results with the proposed mechanism is helpful in establishing the set of welding parameters for a given material.
Resumo:
The report talks about the implementation of Vehicle Detection tool using opensource software - WxPython. The main functionality of this tool includes collection of data, plotting of magnetometer data and the count of the vehicles detected. The report list about how installation process and various functionality of the tool.
Resumo:
In this study, the influence of tool rotation speed and feed rate on the forming limit of friction stir welded Al 6061-T651 sheets has been investigated. The forming limit curve was evaluated by limit dome height test performed on all the friction stir welded sheets. The welding trials were conducted at a tool rotation speed of 1300 and 1400 r/min and feed rate of 90 and 100 mm/min. A third trial of welding was performed at a rotational speed of 1500 r/min and feed rate 120 mm/min. It is found that with increase in the tool rotation speed, from 1300 to 1400 r/min, for a constant feed rate, the forming limit of friction stir welded blank has improved and with increase in feed rate, from 90 to 100 mm/min, for a constant tool rotation speed, it has decreased. The forming limit of friction stir welded sheets is better than unwelded sheets. The thickness gradient after forming is severe in the cases of friction stir welded blanks made at higher feed rate and lower rotation speed. The strain hardening exponent of weld (n) increases with increase in tool rotation speed and it decreases with increase in feed rate. It has been demonstrated that the change in the forming limit of friction stir welded sheets with respect to welding parameters is due to the thickness distribution severity and strain hardening exponent of the weld region during forming. There is not much variation in the dome height among the friction stir welded sheets tested. When compared with unwelded sheets, dome height of friction stir welded sheets is higher in near-plane-strain condition, but it is lesser in stretching strain paths.
Resumo:
The sliding history in friction-induced material transfer of dry 2H-MoS2 particles in a sheared contact was studied. Video images in contact showed fragmentation of lubricant particles and build-up of a transfer film, and were used to measure the speed of fragmented particles in the contact region. Total internal reflection (TIR) Raman spectroscopy was used to follow the build-up of the MoS2 transfer film. A combination of in situ and ex situ analysis of the mating bodies revealed the thickness of the transfer film at steady state to be of the order of 35 nm on the ball surface and 15 nm on the flat substrate. Insights into the mechanism of formation of the transfer film in the early stages of sliding contact are deduced.
Resumo:
We review the existing literature on the application of X-ray photoelectron spectroscopy in the study of nanocrystals. The unique ability of this technique to provide quantitative and reliable descriptions of highly complex internal structures of a variety of nanocrystals has been discussed in detail. We show that an accurate description of the nanocrystal internal structure is crucial and a prerequisite to understand many different properties, particularly optical properties, of such nanocrystal systems. We also discuss limitations and future outlook of this technique.
Resumo:
Space-vector-based pulse width modulation (PWM) for a voltage source inverter (VSI) offers flexibility in terms of different switching sequences. Numerical simulation is helpful to assess the performance of a PWM method before actual implementation. A quick-simulation tool to simulate a variety of space-vector-based PWM strategies for a two-level VSI-fed squirrel cage induction motor drive is presented. The simulator is developed using C and Python programming languages, and has a graphical user interface (GUI) also. The prime focus being PWM strategies, the simulator developed is 40 times faster than MATLAB in terms of the actual time taken for a simulation. Simulation and experimental results are presented on a 5-hp ac motor drive.
Resumo:
Simultaneous measurements of thickness and temperature profile of the lubricant film at chip-tool interface during machining have been studied in this experimental programme. Conventional techniques such as thermography can only provide temperature measurement under controlled environment in a laboratory and without the addition of lubricant. The present study builds on the capabilities of luminescent sensors in addition to direct image based observations of the chip-tool interface. A suite of experiments conducted using different types of sensors are reported in this paper, especially noteworthy are concomitant measures of thickness and temperature of the lubricant. (C) 2014 Elsevier Ltd.
Resumo:
DNA sequence and structure play a key role in imparting fragility to different regions of the genome. Recent studies have shown that non-B DNA structures play a key role in causing genomic instability, apart from their physiological roles at telomeres and promoters. Structures such as G-quadruplexes, cruciforms, and triplexes have been implicated in making DNA susceptible to breakage, resulting in genomic rearrangements. Hence, techniques that aid in the easy identification of such non-B DNA motifs will prove to be very useful in determining factors responsible for genomic instability. In this study, we provide evidence for the use of primer extension as a sensitive and specific tool to detect such altered DNA structures. We have used the G-quadruplex motif, recently characterized at the BCL2 major breakpoint region as a proof of principle to demonstrate the advantages of the technique. Our results show that pause sites corresponding to the non-B DNA are specific, since they are absent when the G-quadruplex motif is mutated and their positions change in tandem with that of the primers. The efficiency of primer extension pause sites varied according to the concentration of monovalant cations tested, which support G-quadruplex formation. Overall, our results demonstrate that primer extension is a strong in vitro tool to detect non-B DNA structures such as G-quadruplex on a plasmid DNA, which can be further adapted to identify non-B DNA structures, even at the genomic level.
Resumo:
Background: Understanding channel structures that lead to active sites or traverse the molecule is important in the study of molecular functions such as ion, ligand, and small molecule transport. Efficient methods for extracting, storing, and analyzing protein channels are required to support such studies. Further, there is a need for an integrated framework that supports computation of the channels, interactive exploration of their structure, and detailed visual analysis of their properties. Results: We describe a method for molecular channel extraction based on the alpha complex representation. The method computes geometrically feasible channels, stores both the volume occupied by the channel and its centerline in a unified representation, and reports significant channels. The representation also supports efficient computation of channel profiles that help understand channel properties. We describe methods for effective visualization of the channels and their profiles. These methods and the visual analysis framework are implemented in a software tool, CHEXVIS. We apply the method on a number of known channel containing proteins to extract pore features. Results from these experiments on several proteins show that CHEXVIS performance is comparable to, and in some cases, better than existing channel extraction techniques. Using several case studies, we demonstrate how CHEXVIS can be used to study channels, extract their properties and gain insights into molecular function. Conclusion: CHEXVIS supports the visual exploration of multiple channels together with their geometric and physico-chemical properties thereby enabling the understanding of the basic biology of transport through protein channels. The CHEXVIS web-server is freely available at http://vgl.serc.iisc.ernet.in/chexvis/. The web-server is supported on all modern browsers with latest Java plug-in.
Resumo:
This paper describes a university based system relevant to doctoral students who have problems with themselves, their peers and research supervisors. Doctoral students have various challenges to solve and these challenges contribute to delays in their thesis submission. This tool aims at helping them think through their problem in a pre-counseling stage. The tool uses narratives and hypothetical stories to walk a doctoral student through options of responses he or she can make given the situation in the narrative. Narratives were developed after a preliminary survey (n=57) of doctoral students. The survey indicated that problems they experienced were: busy supervisors, negative competition from peers and laziness with self. The narrative scenarios in the tool prompt self-reflection and provide for options to chose from leading to the next scenario that will ensue. The different stages of the stimulus-response cycles are designed based on Thomas-Kilmann conflict resolution techniques (collaboration and avoidance). Each stimulus-response cycle has a score attached that reflects the student's ability to judge a collaborative approach. At the end of all the stages a scorecard is generated indicating either a progressive or regressive outcome of thesis submission.