85 resultados para Infeccion transmission
Resumo:
Transmission of bulk power at high voltages over very long distances has become very imperative. At present, throughout the globe, this task has been mostly performed by overhead transmission lines. The dual task of mechanically supporting and electrically isolating the live phase conductors from the support tower is performed by string insulators. Whether in clean condition or under polluted conditions, the electrical stress distribution along the insulators governs the possible flashover, which is quite detrimental to the system. However, a reliable data on stress distribution in commonly employed string insulators are rather scarce. Considering this, the present work has made an attempt to study accurately, the field distribution in 220 kV strings for six different types of porcelain/ceramic insulators (Normal and Antifog discs) used for high voltage transmission. The surface charge simulation method is employed for the required field computation. Voltage and electric stress distribution is deduced and compared across different types of discs. A comparison on normalised surface resistance, which is an indicator for the stress concentration under polluted condition, is also attempted.
Resumo:
In this paper we address the problem of transmission of correlated sources over a fading multiple access channel (MAC). We provide sufficient conditions for transmission with given distortions. Next these conditions are specialized to a Gaussian MAC (GMAC). Transmission schemes for discrete and Gaussian sources over a fading GMAC are considered. Various power allocation strategies are also compared. Keywords: Fading MAC, Power allocation, Random TDMA, Amplify and Forward, Correlated sources.
Resumo:
We consider a joint power control and transmission scheduling problem in wireless networks with average power constraints. While the capacity region of a wireless network is convex, a characterization of this region is a hard problem. We formulate a network utility optimization problem involving time-sharing across different "transmission modes," where each mode corresponds to the set of power levels used in the network. The structure of the optimal solution is a time-sharing across a small set of such modes. We use this structure to develop an efficient heuristic approach to finding a suboptimal solution through column generation iterations. This heuristic approach converges quite fast in simulations, and provides a tool for wireless network planning.
Resumo:
This paper describes a bi-directional switch commutation strategy for a resonant matrix converter loaded with a contactless energy transmission system. Due to the different application compared to classical 3 phase to 3 phase matrix converters supplying induction machines a new investigation of possible commutation principles is necessary. The paper therefore compares the full bridge series-resonant converter with the 3 phase to 2 phase matrix converter. From the commutation of the full bridge series-resonant converter, conditions for the bi-directional switch commutation are derived. One of the main benefits of the derived strategy is the minimization of commutation steps, which is independent from the load current sign.
Resumo:
In this article, theoretical and the experimental studies are reported on the adaptive control of vibration transmission in a strut system subjected to a longitudinal pulse train excitation. In the control scheme, a magneto-strictive actuator is employed at the downstream transmission point in the secondary path. The actuator dynamics is taken into account. The system boundary parameters are first estimated off-line, and later employed to simulate the system dynamics. A Delayed-X Filtered-E spectral algorithm is proposed and implemented in real time. The underlying mechanics based filter construction allows for the time varying system dynamics to be taken into account. This work should be of interest for active control of vibration and noise transmission in helicopter gearbox support struts and other systems.
Resumo:
This paper presents an approach for identifying the faulted line section and fault location on transmission systems using support vector machines (SVMs) for diagnosis/post-fault analysis purpose. Power system disturbances are often caused by faults on transmission lines. When fault occurs on a transmission system, the protective relay detects the fault and initiates the tripping operation, which isolates the affected part from the rest of the power system. Based on the fault section identified, rapid and corrective restoration procedures can thus be taken to minimize the power interruption and limit the impact of outage on the system. The approach is particularly important for post-fault diagnosis of any mal-operation of relays following a disturbance in the neighboring line connected to the same substation. This may help in improving the fault monitoring/diagnosis process, thus assuring secure operation of the power systems. In this paper we compare SVMs with radial basis function neural networks (RBFNN) in data sets corresponding to different faults on a transmission system. Classification and regression accuracy is reported for both strategies. Studies on a practical 24-Bus equivalent EHV transmission system of the Indian Southern region is presented for indicating the improved generalization with the large margin classifiers in enhancing the efficacy of the chosen model.