50 resultados para Indo-Iranians.
Resumo:
This paper deals with the characterisation of tar from two configurations of bioresidue thermochemical conversion reactors designed for producer gas based power generation systems. The pulverised fuel reactor is a cyclone system (R1) and the solid bioresidue reactor (denoted R2) is an open top twin air entry system both at 75-90 kg/h capacity (to generate electricity similar to 100 kVA). The reactor, R2, has undergone rigorous test in a major Indo-Swiss programme for the tar quantity at various conditions. The former is a recent technology development. Tars collected from these systems by a standard tar collection apparatus at the laboratory at Indian Institute of Science have been analysed at the Royal Institute of Technology (KTH), Sweden. The results of these analyses show that these thermochemical conversion reactors behave differently from the earlier reactors reported in literature in so far as tar generation is concerned. The extent of tar in hot gas is about 700-800 ppm for R1 and 70-100 ppm for R2. The amounts of the major compounds - naphthalene and phenol-are much lower that what is generally understood to happen in the gasifiers in Europe. It is suggested that the longer residence times at high temperatures allowed for in these reactors is responsible for this behavior. It is concluded the new generation reactor concepts extensively tried out at lower power levels hold promise for high power atmospheric gasification systems for woody as well as pulverisable bioresidues.
Resumo:
Current analytical work on the effect of convection and viscoelasticity on the early and late stages of spinodal decomposition is briefly described. In the early stages, the effect of viscoelastic stresses was analysed using a simple Maxwell model for the stress, which was incorporated in the Langevin equation for the momentum field. The viscoelastic stresses are found to enhance the rate of decomposition. In the late stages, the pattern formed depends on the relative composition of the two species. Droplet spinodal decomposition occurs when the concentration of one of the species is small. Convective transport does not have a significant effect on the growth of a single droplet, but it does result in an attractive interaction between non - Brownian droplets which could lead to coalescence. The effect of convective transport for the growth of random interfaces in a near symmetric quench was analysed using an 'area distribution function', which gives the distribution of surface area of the interface in curvature space. It was found that the curvature of the interface decreases proportional to t in the late stages of spinodal decomposition, and the surface area also decreases proportional to t.
Decoupling of diffusion from viscosity: Difference scenario for translational and rotational motions
Resumo:
Recent experiments have indicated a dramatically different viscosity dependence of the translational and the rotational diffusion coefficients in a supercooled liquid as the glass transition temperature is approached from above. While the translational motion seems to be decoupled from the rising viscosity (eta), the rotational motion seems to remain firmly coupled to eta. In order to understand the microscopic origin of this behavior, we have carried nut detailed theoretical calculations of both the quantities by using a self-consistent mode-coupling theory (MCT). it is found that when the size of the solute is same as that of the solvent molecules, the conventional MCT fails to predict the observed decoupling. The solvent inhomogeneity is found to play a decisive role in determining the decoupling. The difference in the viscosity dependence between rotation and translational diffusion coefficient is discussed.
Resumo:
We present numerical studies of a model for CO oxidation on the surface of Pt(110) proposed in Ref. 1. The model shows several interesting regimes, some of which exhibit spatiotemporal chaos. The time series of the CO concentration at a given point consists of a sequence of pulses. We concentrate on interpulse intervals theta and show that their distribution P(theta) approaches a delta function continuously as the system goes from a state M, with meandering spirals, to a state S, with spatially frozen spiral cores. This should be verifiable experimentally.
Resumo:
The December 2011 release of a draft United States Food and Drug Administration (FDA) guidance concerning regulatory classification of pharmaceutical cocrystals of active pharmaceutical ingredients (APIs) addressed two matters of topical interest to the crystal engineering and pharmaceutical science communities: (1) a proposed definition of cocrystals; (2) a proposed classification of pharmaceutical cocrystals as dissociable ``API-excipient'' molecular complexes. The Indo U.S. Bilateral Meeting sponsored by the Indo-U.S. Science and Technology Forum titled The Evolving Role of Solid State Chemistry in Pharmaceutical Science was held in Manesar near Delhi, India, from February 2-4, 2012. A session of the meeting was devoted to discussion of the FDA guidance draft. The debate generated strong consensus on the need to define cocrystals more broadly and to classify them like salts. It was also concluded that the diversity of API crystal forms makes it difficult to classify solid forms into three categories that are mutually exclusive. This perspective summarizes the discussion in the Indo-U.S. Bilateral Meeting and includes contributions from researchers who were not participants in the meeting.
Resumo:
The failure of atmospheric general circulation models (AGCMs) forced by prescribed SST to simulate and predict the interannual variability of Indian/Asian monsoon has been widely attributed to their inability to reproduce the actual sea surface temperature (SST)-rainfall relationship in the warm Indo-Pacific oceans. This assessment is based on a comparison of the observed and simulated correlation between the rainfall and local SST. However, the observed SSTconvection/rainfall relationship is nonlinear and for this a linear measure such as the correlation is not an appropriate measure. We show that the SST-rainfall relationship simulated by atmospheric and coupled general circulation models in IPCC AR4 is nonlinear, as observed, and realistic over the tropical West Pacific (WPO) and the Indian Ocean (IO). The SST-rainfall pattern simulated by the coupled versions of these models is rather similar to that from the corresponding atmospheric one, except for a shift of the entire pattern to colder/warmer SSTs when there is a cold/warm bias in the coupled version.
Resumo:
A new species of montane toad Duttaphrynus is described from Nagaland state of Northeast India. The new species is diagnosable based on following combination of characters: absence of preorbital, postorbital and orbitotympanic ridges, elongated and broad parotid gland, first finger longer than second and presence of a mid-dorsal line. The tympanum is hidden under a skin fold (in male) or absent (in female). The species is compared with its congers from India and Indo-China. We propose to consider Duttaphrynus wokhaensis as junior synonym of Duttaphrynus melanostictus.
Resumo:
Using continuous and near-real time measurements of the mass concentrations of black carbon (BC) aerosols near the surface, for a period of 1 year (from January to December 2006) from a network of eight observatories spread over different environments of India, a space-time synthesis is generated. The strong seasonal variations observed, with a winter high and summer low, are attributed to the combined effects of changes in synoptic air mass types, modulated strongly by the atmospheric boundary layer dynamics. Spatial distribution shows much higher BC concentration over the Indo-Gangetic Plain (IGP) than the peninsular Indian stations. These were examined against the simulations using two chemical transport models, GOCART (Goddard Global Ozone Chemistry Aerosol Radiation and Transport) and CHIMERE for the first time over Indian region. Both the model simulations significantly deviated from the measurements at all the stations; more so during the winter and pre-monsoon seasons and over mega cities. However, the CHIMERE model simulations show better agreement compared with the measurements. Notwithstanding this, both the models captured the temporal variations; at seasonal and subseasonal timescales and the natural variabilities (intra-seasonal oscillations) fairly well, especially at the off-equatorial stations. It is hypothesized that an improvement in the atmospheric boundary layer (ABL) parameterization scheme for tropical environment might lead to better results with GOCART.
Resumo:
The first regional synthesis of long-term (back to similar to 25 years at some stations) primary data (from direct measurement) on aerosol optical depth from the ARFINET (network of aerosol observatories established under the Aerosol Radiative Forcing over India (ARFI) project of Indian Space Research Organization over Indian subcontinent) have revealed a statistically significant increasing trend with a significant seasonal variability. Examining the current values of turbidity coefficients with those reported similar to 50 years ago reveals the phenomenal nature of the increase in aerosol loading. Seasonally, the rate of increase is consistently high during the dry months (December to March) over the entire region whereas the trends are rather inconsistent and weak during the premonsoon (April to May) and summer monsoon period (June to September). The trends in the spectral variation of aerosol optical depth (AOD) reveal the significance of anthropogenic activities on the increasing trend in AOD. Examining these with climate variables such as seasonal and regional rainfall, it is seen that the dry season depicts a decreasing trend in the total number of rainy days over the Indian region. The insignificant trend in AOD observed over the Indo-Gangetic Plain, a regional hot spot of aerosols, during the premonsoon and summer monsoon season is mainly attributed to the competing effects of dust transport and wet removal of aerosols by the monsoon rain. Contributions of different aerosol chemical species to the total dust, simulated using Goddard Chemistry Aerosol Radiation and Transport model over the ARFINET stations, showed an increasing trend for all the anthropogenic components and a decreasing trend for dust, consistent with the inference deduced from trend in Angstrom exponent.
Resumo:
In March 2012, the authors met at the National Evolutionary Synthesis Center (NESCent) in Durham, North Carolina, USA, to discuss approaches and cooperative ventures in Indo-Pacific phylogeography. The group emerged with a series of findings: (1) Marine population structure is complex, but single locus mtDNA studies continue to provide powerful first assessment of phylogeographic patterns. (2) These patterns gain greater significance/power when resolved in a diversity of taxa. New analytical tools are emerging to address these analyses with multi-taxon approaches. (3) Genome-wide analyses are warranted if selection is indicated by surveys of standard markers. Such indicators can include discordance between genetic loci, or between genetic loci and morphology. Phylogeographic information provides a valuable context for studies of selection and adaptation. (4) Phylogeographic inferences are greatly enhanced by an understanding of the biology and ecology of study organisms. (5) Thorough, range-wide sampling of taxa is the foundation for robust phylogeographic inference. (6) Congruent geographic and taxonomic sampling by the Indo-Pacific community of scientists would facilitate better comparative analyses. The group concluded that at this stage of technology and software development, judicious rather than wholesale application of genomics appears to be the most robust course for marine phylogeographic studies. Therefore, our group intends to affirm the value of traditional (''unplugged'') approaches, such as those based on mtDNA sequencing and microsatellites, along with essential field studies, in an era with increasing emphasis on genomic approaches.
Resumo:
The 11 April 2012 earthquakes (M-w 8.6 and M-w 8.2) were sourced within the Northern Wharton Basin in the northeastern part of the Indo-Australian diffuse plate boundary. This unusually active oceanic intraplate region has generated many large earthquakes in the past, most of which are believed to have occurred by strike-slip motion, triggered by the NW-SE oriented compressional stresses acting across the Indian and Australian plates. In the aftermath of the 2004 megathrust earthquake along the nearby Sunda Trench, increased seismicity in the Northern Wharton Basin is attributed to the stress transfer from the Sumatra-Andaman plate boundary. Models proposed for the April 2012 earthquakes differ somewhat in details but partly attribute their complex rupture to the reactivation of pre-existing structures. These structures include previously mapped N-S trending fracture zones within the Northern Wharton Basin and E-W lineations across the Ninetyeast Ridge. In this paper, we review the regional tectonics and past seismicity on the Indo-Australian Plate in order to understand the seismotectonic setting of the April 2012 Indian Ocean earthquakes. (c) 2014 Elsevier B.V. All rights reserved.
Resumo:
The objective of this study is to evaluate the ability of a European chemistry transport model, `CHIMERE' driven by the US meteorological model MM5, in simulating aerosol concentrations dust, PM10 and black carbon (BC)] over the Indian region. An evaluation of a meteorological event (dust storm); impact of change in soil-related parameters and meteorological input grid resolution on these aerosol concentrations has been performed. Dust storm simulation over Indo-Gangetic basin indicates ability of the model to capture dust storm events. Measured (AERONET data) and simulated parameters such as aerosol optical depth (AOD) and Angstrom exponent are used to evaluate the performance of the model to capture the dust storm event. A sensitivity study is performed to investigate the impact of change in soil characteristics (thickness of the soil layer in contact with air, volumetric water, and air content of the soil) and meteorological input grid resolution on the aerosol (dust, PM10, BC) distribution. Results show that soil parameters and meteorological input grid resolution have an important impact on spatial distribution of aerosol (dust, PM10, BC) concentrations.