67 resultados para Indian Ocean on monsoon


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of the dipole mode (DM) events in the Indian Ocean is examined using an ocean model that is driven by the NCEP fluxes for the period 1975-1998. The positive DM events during 1997, 1994 and 1982 and negative DM events during 1996 and 1984-1985 are captured by the model and it reproduces both the surface and subsurface features associated with these events. In its positive phase, the DM is characterized by warmer than normal SST in the western Indian Ocean and cooler than normal SST in the eastern Indian Ocean. The DM events are accompanied by easterly wind anomalies along the equatorial Indian Ocean and upwelling-favorable alongshore wind anomalies along the coast of Sumatra. The Wyrtki jets are weak during positive DM events, and the thermocline is shallower than normal in the eastern Indian Ocean and deeper in the west. This anomaly pattern reverses during negative DM events. During the positive phase of the DM easterly wind anomalies excite an upwelling equatorial Kelvin wave. This Kelvin wave reflects from the eastern boundary as an upwelling Rossby wave which propagates westward across the equatorial Indian Ocean. The anomalies in the eastern Indian Ocean weaken after the Rossby wave passes. A similar process excites a downwelling Rossby wave during the negative phase. This Rossby wave is much weaker but wind forcing in the central equatorial Indian Ocean amplifies the downwelling and increases its westward phase speed. This Rossby wave initiates the deepening of the thermocline in the western Indian Ocean during the following positive phase of the DM. Rossby wave generated in the southern tropical Indian Ocean by Ekman pumping contributes to this warming. Concurrently, the temperature equation of the model shows upwelling and downwelling to be the most important mechanism during both positive events of 1994 and 1997. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Study of Oceans dynamics and forecast is crucial as it influences the regional climate and other marine activities. Forecasting oceanographic states like sea surface currents, Sea surface temperature (SST) and mixed layer depth at different time scales is extremely important for these activities. These forecasts are generated by various ocean general circulation models (OGCM). One such model is the Regional Ocean Modelling System (ROMS). Though ROMS can simulate several features of ocean, it cannot reproduce the thermocline of the ocean properly. Solution to this problem is to incorporates data assimilation (DA) in the model. DA system using Ensemble Transform Kalman Filter (ETKF) has been developed for ROMS model to improve the accuracy of the model forecast. To assimilate data temperature and salinity from ARGO data has been used as observation. Assimilated temperature and salinity without localization shows oscillations compared to the model run without assimilation for India Ocean. Same was also found for u and v-velocity fields. With localization we found that the state variables are diverging within the localization scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a one-way nested Indian Ocean regional model. The model combines the National Oceanic and Atmospheric Administration (NOAA) Geophysical Fluid Dynamics Laboratory's (GFDL) Modular Ocean Model (MOM4p1) at global climate model resolution (nominally one degree), and a regional Indian Ocean MOM4p1 configuration with 25 km horizontal resolution and 1 m vertical resolution near the surface. Inter-annual global simulations with Coordinated Ocean-Ice Reference Experiments (CORE-II) surface forcing over years 1992-2005 provide surface boundary conditions. We show that relative to the global simulation, (i) biases in upper ocean temperature, salinity and mixed layer depth are reduced, (ii) sea surface height and upper ocean circulation are closer to observations, and (iii) improvements in model simulation can be attributed to refined resolution, more realistic topography and inclusion of seasonal river runoff. Notably, the surface salinity bias is reduced to less than 0.1 psu over the Bay of Bengal using relatively weak restoring to observations, and the model simulates the strong, shallow halocline often observed in the North Bay of Bengal. There is marked improvement in subsurface salinity and temperature, as well as mixed layer depth in the Bay of Bengal. Major seasonal signatures in observed sea surface height anomaly in the tropical Indian Ocean, including the coastal waveguide around the Indian peninsula, are simulated with great fidelity. The use of realistic topography and seasonal river runoff brings the three dimensional structure of the East India Coastal Current and West India Coastal Current much closer to observations. As a result, the incursion of low salinity Bay of Bengal water into the southeastern Arabian Sea is more realistic. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An investigation is presented of the daily variation of the maximum cloud zone (MCZ) and the 7W mb trough in the Northern Hemisphere over the Indian longitudes 70–90°E during April–October for 1973–77. It is found that during June–September there are two favorable locations for a MCZ over these longitudes–on a majority of days the MCZ is present in the monsoon zone north of 15°N, and often a secondary MCZ occurs in the equatorial region (0–10°N). The monsoon MCZ gets established by northward movement of the MCZ occurring over the equatorial Indian ocean in April and May. The secondary MCZ appears intermittently, and is characterized by long spells of persistence only when the monsoon MCZ is absent. In each of the seasons studied, the MCZ temporarily disappeared from the mean summer monsoon location (15–28°N) about four weeks after it was established near the beginning of July. It is reestablished by the northward movement of the secondary MCZ, which becomes active during the absence of the monsoon MCZ, in a manner strikingly similar to that observed in the spring to summer transition. A break in monsoon conditions prevails just prior to the temporary disappearance of the monsoon MCZ. Thus we conclude that the monsoon MCZ cannot survive for longer than a month without reestablishment by the secondary MCZ. Possible underlying mechanisms are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For over a century, the term break has been used for spells in which the rainfall over the Indian monsoon zone is interrupted. The phenomenon of 'break monsoon' is of great interest because long intense breaks are often associated with poor monsoon seasons. Such breaks have distinct circulation characteristics (heat trough type circulation) and have a large impact on rainfed agriculture. Although interruption of the monsoon rainfall is considered to be the most important feature of the break monsoon, traditionally breaks have been identified on the basis of the surface pressure and wind patterns over the Indian region. We have defined breaks (and active spells) on the basis of rainfall over the monsoon zone. The rainfall criteria are chosen so as to ensure a large overlap with the traditional breaks documented by Ramamurthy (1969) and De et al (1998). We have identified these rainbreaks for 1901-89. We have also identified active spells on the basis of rainfall over the Indian monsoon zone. We have shown that the all-India summer monsoon rainfall is significantly negatively correlated with the number of rainbreak days (correlation coefficient -0.56) and significantly positively correlated with the number of active days (correlation coefficient 0.47). Thus the interannual variation of the all-India summer monsoon rainfall is shown to be related to the number of days of rainbreaks and active spells identified here. There have been several studies of breaks (and also active spells in several cases) identified on the basis of different criteria over regions differing in spatial scales (e.g., Webster et al 1998; Krishnan et al 2000; Goswami and Mohan 2000; and Annamalai and Slingo 2001). We find that there is considerable overlap between the rainbreaks we have identified and breaks based on the traditional definition. There is some overlap with the breaks identified by Krishnan et al (2000) but little overlap with breaks identified by Webster et al (1998). Further, there are three or four active-break cycles in a season according to Webster et al (1998) which implies a time scale of about 40 days for which Goswami and Mohan (2000), and Annamalai and Slingo'(2001) have studied breaks and active minus break fluctuations. On the other hand, neither the traditional breaks (Ramamurthy 1969; and De et al 1998) nor the rainbreaks occur every year. This suggests that the 'breaks' in these studies axe weak spells of the intraseasonal variation of the monsoon, which occur every year. We have derived the OLR and circulation patterns associated with rainbreaks and active spells and compared them with the patterns associated with breaks/active minus break spells from these studies. Inspite of differences in the patterns over the Indian region, there is one feature which is seen in the OLR anomaly patterns of breaks identified on the basis of different criteria as well as the rainbreaks identified in this paper viz., a quadrapole over the Asia-west Pacific region arising from anomalies opposite (same) in sign to those over the Indian region occurring over the equatorial Indian Ocean and northern tropical (equatorial) parts of the west Pacific. Thus it appears that this quadrapole is a basic feature of weak spells of the intraseasonal,variation over the Asia-west Pacific region. Since the rainbreaks are intense weak spells, this basic feature is also seen in the composite patterns of these breaks. We find that rainbreaks (active spells) are also associated with negative (positive) anomalies over a part of the cast Pacific suggesting that the convection over the Indian region is linked to that over the east Pacific not only on the interannual scale (as evinced by the link between the Indian summer monsoon rainfall and ENSO) but on the intraseasonal scale as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analysis of the retrospective predictions by seven coupled ocean atmosphere models from major forecasting centres of Europe and USA, aimed at assessing their ability in predicting the interannual variation of the Indian summer monsoon rainfall (ISMR), particularly the extremes (i.e. droughts and excess rainfall seasons) is presented in this article. On the whole, the skill in prediction of extremes is not bad since most of the models are able to predict the sign of the ISMR anomaly for a majority of the extremes. There is a remarkable coherence between the models in successes and failures of the predictions, with all the models generating loud false alarms for the normal monsoon season of 1997 and the excess monsoon season of 1983. It is well known that the El Nino and Southern Oscillation (ENSO) and the Equatorial Indian Ocean Oscillation (EQUINOO) play an important role in the interannual variation of ISMR and particularly the extremes. The prediction of the phases of these modes and their link with the monsoon has also been assessed. It is found that models are able to simulate ENSO-monsoon link realistically, whereas the EQUINOO-ISMR link is simulated realistically by only one model the ECMWF model. Furthermore, it is found that in most models this link is opposite to the observed, with the predicted ISMR being negatively (instead of positively) correlated with the rainfall over the western equatorial Indian Ocean and positively (instead of negatively) correlated with the rainfall over the eastern equatorial Indian Ocean. Analysis of the seasons for which the predictions of almost all the models have large errors has suggested the facets of ENSO and EQUINOO and the links with the monsoon that need to be improved for improving monsoon predictions by these models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In monsoon regions, the seasonal migration of the intertropical convergence zone (ITCZ) is manifested as a seasonal reversal of winds. Most of the summer monsoon rainfall over India occurs owing to synoptic and large-scale convection associated with the continental ITCZ (Fig. 1). We have investigated the interaction between these large-scale convective systems and the ocean over which they are generated1â3, concentrating on the relationship between organized convection over the Indian Ocean and sea surface temperature (SST). We report here that on a monthly basis the degree of cloudiness correlates well with SST for the relatively colder oceans, but when SST is maintained above 28 °C it ceases to be an important factor in determining the variability of cloudiness. Over the major regions of convection east of 70°E, which are warm year after year, the observed cloudiness cannot be correlated with variations in SST.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Indian summer monsoon season of 2009 commenced with a massive deficit in all-India rainfall of 48% of the average rainfall in June. The all-India rainfall in July was close to the normal but that in August was deficit by 27%. In this paper, we first focus on June 2009, elucidating the special features and attempting to identify the factors that could have led to the large deficit in rainfall. In June 2009, the phase of the two important modes, viz., El Nino and Southern Oscillation (ENSO) and the equatorial Indian Ocean Oscillation (EQUINOO) was unfavourable. Also, the eastern equatorial Indian Ocean (EEIO) was warmer than in other years and much warmer than the Bay. In almost all the years, the opposite is true, i.e., the Bay is warmer than EEIO in June. It appears that this SST gradient gave an edge to the tropical convergence zone over the eastern equatorial Indian Ocean, in competition with the organized convection over the Bay. Thus, convection was not sustained for more than three or four days over the Bay and no northward propagations occurred. We suggest that the reversal of the sea surface temperature (SST) gradient between the Bay of Bengal and EEIO, played a critical role in the rainfall deficit over the Bay and hence the Indian region. We also suggest that suppression of convection over EEIO in association with the El Nino led to a positive phase of EQUINOO in July and hence revival of the monsoon despite the El Nino. It appears that the transition to a negative phase of EQUINOO in August and the associated large deficit in monsoon rainfall can also be attributed to the El Nino.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Under the project `Seasonal Prediction of the Indian Monsoon' (SPIM), the prediction of Indian summer monsoon rainfall by five atmospheric general circulation models (AGCMs) during 1985-2004 was assessed. The project was a collaborative effort of the coordinators and scientists from the different modelling groups across the country. All the runs were made at the Centre for Development of Advanced Computing (CDAC) at Bangalore on the PARAM Padma supercomputing system. Two sets of simulations were made for this purpose. In the first set, the AGCMs were forced by the observed sea surface temperature (SST) for May-September during 1985-2004. In the second set, runs were made for 1987, 1988, 1994, 1997 and 2002 forced by SST which was obtained by assuming that the April anomalies persist during May-September. The results of the first set of runs show, as expected from earlier studies, that none of the models were able to simulate the correct sign of the anomaly of the Indian summer monsoon rainfall for all the years. However, among the five models, one simulated the correct sign in the largest number of years and the second model showed maximum skill in the simulation of the extremes (i.e. droughts or excess rainfall years). The first set of runs showed some common bias which could arise either from an excessive sensitivity of the models to El Nino Southern Oscillation (ENSO) or an inability of the models to simulate the link of the Indian monsoon rainfall to Equatorial Indian Ocean Oscillation (EQUINOO), or both. Analysis of the second set of runs showed that with a weaker ENSO forcing, some models could simulate the link with EQUINOO, suggesting that the errors in the monsoon simulations with observed SST by these models could be attributed to unrealistically high sensitivity to ENSO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A state-of-the-art model of the coupled ocean-atmosphere system, the climate forecast system (CFS), from the National Centres for Environmental Prediction (NCEP), USA, has been ported onto the PARAM Padma parallel computing system at the Centre for Development of Advanced Computing (CDAC), Bangalore and retrospective predictions for the summer monsoon (June-September) season of 2009 have been generated, using five initial conditions for the atmosphere and one initial condition for the ocean for May 2009. Whereas a large deficit in the Indian summer monsoon rainfall (ISMR; June-September) was experienced over the Indian region (with the all-India rainfall deficit by 22% of the average), the ensemble average prediction was for above-average rainfall during the summer monsoon. The retrospective predictions of ISMR with CFS from NCEP for 1981-2008 have been analysed. The retrospective predictions from NCEP for the summer monsoon of 1994 and that from CDAC for 2009 have been compared with the simulations for each of the seasons with the stand-alone atmospheric component of the model, the global forecast system (GFS), and observations. It has been shown that the simulation with GFS for 2009 showed deficit rainfall as observed. The large error in the prediction for the monsoon of 2009 can be attributed to a positive Indian Ocean Dipole event seen in the prediction from July onwards, which was not present in the observations. This suggests that the error could be reduced with improvement of the ocean model over the equatorial Indian Ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arabian Sea Mini Warm Pool (ASMWP) is a part of the Indian Ocean Warm Pool and formed in the eastern Arabian Sea prior to the onset of the summer monsoon season. This warm pool attained its maximum intensity during the pre-monsoon season and dissipated with the commencement of summer monsoon. The main focus of the present work was on the triggering of the dissipation of this warm pool and its relation to the onset of summer monsoon over Kerala. This phenomenon was studied utilizing NCEP/NCAR (National Center for Environmental Prediction/National Center for Atmospheric and Research) re-analysis data, TRMM Micro wave Imager (TMI) and observational data. To define the ASMWP, sea surface temperature exceeding 30.25A degrees C was taken as the criteria. The warm pool attained its maximum dimension and intensity nearly 2 weeks prior to the onset of summer monsoon over Kerala. Interestingly, the warm pool started its dissipation immediately after attaining its maximum core temperature. This information can be included in the present numerical models to enhance the prediction capability. It was also found that the extent and intensity of the ASMWP varied depending on the type of monsoon i.e., excess, normal, and deficient monsoon. Maximum core temperature and wide coverage of the warm pool observed during the excess monsoon years compared to normal and deficient monsoon years. The study also revealed a strong relationship between the salinity in the eastern Arabian Sea and the nature of the monsoon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The simulation of precipitation in a general circulation model relying on relaxed mass flux cumulus parameterization scheme is sensitive to cloud adjustment time scale (CATS). In this study, the frequency of the dominant intra-seasonal mode and interannual variability of Indian summer monsoon rainfall (ISMR) simulated by an atmospheric general circulation model is shown to be sensitive to the CATS. It has been shown that a longer CATS of about 5 h simulates the spatial distribution of the ISMR better. El Nio Southern Oscillation-ISMR relationship is also sensitive to CATS. The equatorial Indian Ocean rainfall and ISMR coupling is sensitive to CATS. Our study suggests that a careful choice of CATS is necessary for adequate simulation of spatial pattern as well as interannual variation of Indian summer monsoon precipitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The physical mechanism through which Ei-Nino and Southern Oscillation (ENSO) tends to produce deficient precipitation over Indian continent is investigated using both observations as well as a general circulation model. Both analysis of observations and atmospheric general circulation model (AGCM) study show that the planetary scale response associated with ENSO primarily influences the equatorial Indian Ocean region. Through this interaction it tends to favour the equatorial heat source, enhance precipitation over the equatorial Indian Ocean and indirectly cause a decrease in continental precipitation through induced subsidence. This situation is further complicated by the fact the regional tropospheric quasi biennial oscillation (QBO) has a bimodal structure over this region with large amplitude over the Indian continent. While the ENSO response has a quasi-four year periodicity and tends peak during beginning of the calendar year, the QBO mode tends to peak during northern summer. Thus, the QBO mode exerts a stronger influence on the interannual variability of the monsoon. The strength of the Indian monsoon in a given year depends on the combined effect of the ENSO and the QBO mode. Sines the two oscillations have disparate time scales, exact phase information of the two modes during northern summer is important in determining the Indian summer monsoon. The physical mechanism of the interannual variations of the Indian monsoon precipitation associated with ENSO presented here is similar to the physical process that cause intraseasonal 'active', 'break' oscillations of the monsoon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the nature of basin-scale hydroclimatic association for Indian subcontinent is investigated. It is found that, the large-scale circulation information from Indian Ocean is also equally important in addition to the El Nino-Southern Oscillation (ENSO), owing to the geographical location of Indian subcontinent. The hydroclimatic association of the variation of monsoon inflow into the Hirakud reservoir in India is investigated using ENSO and EQUatorial INdian Ocean Oscillation (EQUINOO, the atmospheric part of Indian Ocean Dipole mode) as the large-scale circulation information from tropical Pacific Ocean and Indian Ocean regions respectively. Individual associations of ENSO & EQUINOO indices with inflow into Hirakud reservoir are also assessed and found to be weak. However, the association of inflows into Hirakud reservoir with the composite index (CI) of ENSO and EQUINOO is quite strong. Thus, the large-scale circulation information from Indian Ocean is also important apart form the ENSO. The potential of the combined information of ENSO and EQUINOO for predicting the inflows during monsoon is also investigated with promising results. The results of this study will be helpful to water resources managers due to fact that the nature of monsoon inflow is becoming available as an early prediction.