269 resultados para INTEGRAL SOLUTIONS
Resumo:
Bentonite, commonly used for liner constructions in waste containment systems, possesses many limitations. Illite or illite containing bentonite has been proposed as an alternative material for liner construction. Their properties in different types of pore fluids are important to assess the long-term performance of the liner. Further, the illite-bentonite interaction occurs and changes their properties. The effect of these interactions is known when the pore fluid is only water. How their properties are modified in electrolyte solutions has been brought out in this paper. The index properties have been studied since they give an indication of their engineering properties. Due to reduction in the thickness of the diffused double layer and consequent particle aggregation in bentonite, the effect of clay-clay interaction reduces in electrolyte solutions. In electrolyte solutions, the liquid limit, the plasticity index, and free swell index of bentonite are lower than illite. The plasticity index of bentonite is further reduced in KCI solution. Clays with a higher plasticity index perform better to retain pollutants and reduce permeability. Hence, the presence of both illite and bentonite ensures better performance of the liner in different fluids.
Resumo:
We develop a new theoretical formulation to study ion conductance in electrolyte solutions, based on a mode coupling theory treatment of the electrolyte friction. The new theory provides expressions for both the ion atmosphere relaxation and electrophoretic contributions to the total electrolyte friction that acts on a moving ion. While the ion atmosphere relaxation term arises from the time-dependent microscopic interaction of the moving ion with the surrounding ions in the solution, the electrophoretic term originates from the coupling of the ion's velocity to the collective current mode of the ion atmosphere. Mode coupling theory, combined with time-dependent density functional theory of ion atmosphere fluctuations, leads to self-consistent expressions for these two terms which also include the effects of self-motion of the ion under consideration. These expressions have been solved for the concentration dependence of electrolyte friction and ion conductance. It is shown that in the limit of very low ion concentration, the present theory correctly reduces to the well-known Debye-Huckel-Onsager limiting law which predicts a linear dependence of conductance on the square root of ion concentration (c). At moderate and high concentrations, the present theory predicts a significant nonlinear and weaker dependence on root c which is in very good agreement with experimental results. The present theory is self-contained and does not involve any adjustable parameter.
Resumo:
A fully developed pulsatile flow in a circular rigid tube is analysed by a microcontinuum approach. Solutions for radial variation of axial velocity and cell rotational velocity across the tube are obtained using the momentum integral method. Simplified forms of the solutions are presented for the relevant physiological data. Marked deviations in the results are observed when compared to a Newtonian fluid model. It is interesting to see that there is sufficient reduction in the mass flow rate, phase lag and friction due to the micropolar character of the fluid.
Resumo:
Some properties of the eigenvalues of the integral operator Kgt defined as Kτf(x) = ∫0τK(x − y) f (y) dy were studied by [1.], 554–566), with some assumptions on the kernel K(x). In this paper the eigenfunctions of the operator Kτ are shown to be continuous functions of τ under certain circumstances. Also, the results of Vittal Rao and the continuity of eigenfunctions are shown to hold for a larger class of kernels.
Resumo:
Measurements have been made of the depolarisation factors \sigma u ,\sigma v ,\sigma h, and the intensity of scattering in the horizontal transverse direction, in the case of solutions of four different samples of chlorinated rubber in carbon tetrachloride. The size, shape and molecular weight of the micelles have been deduced by the application of the light scattering theories of Gans, Vrklajan and Katalinic and Debye. The extent to which the degradation of the rubber molecule occurs on chlorination has also been assessed.
Resumo:
In certain molecular models, and related one-dimensional field theories, localized objects appear with half-integral expectation values of charge. We consider whether these states are eigenstates of charge, with half-integral eigenvalue. We find that it is indeed so for a suitably diffuse definition of the charge operator in question. This diffuse charge operator has a spectrum which approaches a continuum. The analysis is made on a lattice, to avoid divergence ambiguities, and on a finite length, which is only subsequently made large. The half-integral charge phenomenon is not tied to solitons, but can also arise as an end effect.
Resumo:
Approximate closed-form solutions of the non-linear relative equations of motion of an interceptor pursuing a target under the realistic true proportional navigation (RTPN) guidance law are derived using the Adomian decomposition method in this article. In the literature, no study has been reported on derivation of explicit time-series solutions in closed form of the nonlinear dynamic engagement equations under the RTPN guidance. The Adomian method provides an analytical approximation, requiring no linearization or direct integration of the non-linear terms. The complete derivation of the Adomian polynomials for the analysis of the dynamics of engagement under RTPN guidance is presented for deterministic ideal case, and non-ideal dynamics in the loop that comprises autopilot and actuator dynamics and target manoeuvre, as well as, for a stochastic case. Numerical results illustrate the applicability of the method.
Resumo:
The structure of time dependent jets in rotating fluids using similarity transformations is studied theoretically for which exact solutions are discussed. Approximate solution using a modified yon Mises transformation is also explored.
Resumo:
The unsteady pseudo plane motions have been investigated in which each point of the parallel planes is subjected to non-torsional oscillations in their own plane and at any given instant the streamlines are concentric circles. Exact solutions are obtained and the form of the curve , the locus of the centers of these concentric circles, is discussed. The existence of three infinite sets of exact solutions, for the flow in the geometry of an orthogonal rheometer in which the above non-torsional oscillations are superposed on the disks, is established. Three cases arise according to whether is greater than, equal to or less than , where is angular velocity of the basic rotation and is the frequency of the superposed oscillations. For a symmetric solution of the flow these solutions reduce to a single unique solution. The nature of the curve is illustrated graphically by considering an example of the flow between coaxial rotating disks.
Resumo:
The flow of a micropolar fluid in an orthogonal rheometer is considered. It is shown that an infinite number of exact solutions characterizing asymmetric motions are possible. The expressions for pressure in the fluid, the components of the forces and couples acting on the plates are obtained. The effect of microrotation on the flow is brought out by considering numerical results for the case of coaxially rotating disks.
Resumo:
It was proposed earlier [P. L. Sachdev, K. R. C. Nair, and V. G. Tikekar, J. Math. Phys. 27, 1506 (1986)] that the Euler Painlevé equation yy[script `]+ay[script ']2+ f(x)yy[script ']+g(x) y2+by[script ']+c=0 represents the generalized Burgers equations (GBE's) in the same manner as Painlevé equations do the KdV type. The GBE was treated with a damping term in some detail. In this paper another GBE ut+uaux+Ju/2t =(gd/2)uxx (the nonplanar Burgers equation) is considered. It is found that its self-similar form is again governed by the Euler Painlevé equation. The ranges of the parameter alpha for which solutions of the connection problem to the self-similar equation exist are obtained numerically and confirmed via some integral relations derived from the ODE's. Special exact analytic solutions for the nonplanar Burgers equation are also obtained. These generalize the well-known single hump solutions for the Burgers equation to other geometries J=1,2; the nonlinear convection term, however, is not quadratic in these cases. This study fortifies the conjecture regarding the importance of the Euler Painlevé equation with respect to GBE's. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.
Resumo:
The coefficients of thermal expansion reported by Worlton et al. [6] in the case of zircon are given in Table II along with the present data. Although Oql > or• in both cases, the anisotropy is more marked in the case of DyV04. From Table II, it is clear that the coefficient of volume expansion (,6) is almost the same for both compounds.
Resumo:
It is shown that the a;P?lication of the Poincare-Bertrand fcm~ulaw hen made in a suitable manner produces the s~lutiano f certain singular integral equations very quickly, thc method of arriving at which, otherwise, is too complicaled. Two singular integral equations are considered. One of these quaiions is with a Cauchy-tyge kcrnel arid the other is an equalion which appears in the a a w guide theory and the theory of dishcations. Adifferent approach i? alw made here to solve the singular integralquation> of the waveguide theor? ind this i ~ v o l v eth~e use of the inversion formula of the Cauchy-type singular integral equahn and dudion to a system of TIilberl problems for two unknowns which can be dwupled wry easily to obi& tbe closed form solutim of the irilegral equatlou at band. The methods of the prescnt paper avoid all the complicaled approaches of solving the singular integral equaticn of the waveguide theory knowr todate.