114 resultados para Home Iv Therapy
Resumo:
Antipyrine complexes of TiO2+, ZrO2+, Zr4+, Th4+ and UO2+2 perchlorates with molecular formulae TiO(Apy)4(ClO4)2, ZrO(Apy)3(ClO4)2, Zr(Apy)6(ClO4)4, Th(Apy)7(ClO4)4 and UO2(Apy)5(ClO4)2 have been prepared and characterized. The complexes are stable in air at room temperature and decompose exothermally at ~3OO °C. The i.r. study indicates the bonding of the antipyrine to the metal ion through its carbonyl oxygen. The nature of the bonding of the perchlorate and the stereochemistry of the complexes are discussed in the light of infrared spectra, conductivity in solvents of different polarity, and molecular weight measurements. From the UO2+2 group frequencies, the force constant K and rU-o are found to be 6.29 × 105 dynes/ cm-1 and 1.74 Å, respectively.
Resumo:
Bubble formation from porous discs submerged in liquids of different physical properties has been investigated. It is found the number of sites effective for bubble formation is much smaller than the total potentially available sites. The number of effective sites is found to be a function of the surface tension, viscosity, and density of the liquid and the gas flow rate through the disc. A model proposed on the basis of bubble formation from an isolated nozzle and the close packed arrangement of the formed bubbles, explains the phenomenon adequately. © 1970.
Resumo:
Making use of the empirical potential functions for peptide NH .. O bonds, developed in this laboratory, the relative stabilities of the rightand left-handed α-helical structures of poly-L-alanine have been investigated, by calculating their conformational energies (V). The value of Vmin of the right-handed helix (αP) is about - 10.4 kcal/mole, and that of the left-handed helix (αM) is about - 9.6 kcal/mole, showing that the former is lower in energy by 0.8 kcal/mole. The helical parameters of the stable conformation of αP are n ∼ 3.6 and h ∼ 1.5 Å. The hydrogen bond of length 2.85 Å and nonlinearity of about 10° adds about 4.0 kcal/ mole to the stabilising energy of the helix in the minimum enregy region. The energy minimum is not sharply defined, but occurs over a long valley, suggesting that a distribution of conformations (φ{symbol}, ψ) of nearly the same energy may occur for the individual residues in a helix. The experimental data of a-helical fibres of poly-L-alanine are in good agreement with the theoretical results for αP. In the case of proteins, the mean values of (φ{symbol}, ψ) for different helices are distributed, but they invariably occur within the contour for V = Vmin + 2 kcal/mole for αP.
Resumo:
Thorium(IV) is known to form high coordination-number complexes. An attempt has therefore been made to determine the effect of anions on the coordination complexes of diphenyl sulphoxide (DPSO) with thorium(IV). The complexes formed have the formulae [Th(DPSO)6](ClO4)4, [Th(DPSO)4Cl4], [Th(DPSO)4Br4], [Th(DPSO)6I2]I2, [Th(DPSO)4(NCS)4]and [Th(DPSO)3(NO3)4]. In all the complexes, DPSO is coordinated to the metal ion through its oxygen. The electrical conductances in nitrobenzene and in nitromethane, and ebullioscopic molecular weights in acetonitrile, show that the perchlorate and iodide complexes behave as 1:4 and 1:2 electrolytes, respectively; while the other complexes are monomeric and non-electrolytes. The infrared spectra of the solid complexes indicate the ionic nature of the perchlorate, the bidentate nature of the nitrate and the coordination of the thiocyanate through its nitrogen. [Th(DPSO)4Cl4], [Th(DPSO)4Br4]and [Th-(DPSO)3 (NO3)4]decompose endothermically while [Th(DPSO)6](ClO4)4 and [Th(DPSO)4(NCS)4]decompose exothermically, both in air and in nitrogen. The perchlorate complex has octahedral symmetry around the thorium, the halo- and the thiocyanato complexes are 8-coordinate, probably with square antiprismatic structures, while the nitrate complex is 11-coordinate
Resumo:
The kinetics of dimerization of 4-substituted- and unsubstituted o-benzoylbenzoyl chlorides, with iodide ion can be described by the expression, rate =k2[acid chloride][iodide]. The value for the reaction in dimethylformamide solution is –0·38. The entropy of activation for the reaction is –34·2 cal mol–1 K–1 and the activation energy is 10·7 kcal mol–1. These results have been interpreted as evidence for the formation of pseudo-iodide in the rate-determining step and its fast decomposition to radicals which combine to give a mixture of stereoisomeric dilactones.
Resumo:
Nonconventional heptacoordination in combination with efficient magnetic exchange coupling is shown to yield a 1-D heteronuclear {(FeNbIV)-Nb-II} compound with remarkable magnetic features when compared to other Fe(II)-based single chain magnets (SCM). Cyano-bridged heterometallic {3d-4d} and {3d-5d} chains are formed upon assembling Fe(II) bearing a pentadentate macrocycle as the blocking ligand with octacyano metallates, [M(CN)(8)](4-) (M = Nb-IV, Mo-IV, W-IV.) X-ray diffraction (single-crystal and powder) measurements reveal that the [{(H2O)Fe(L-1)}{M(CN)(8)}{Fe(L-1)}](infinity) architectures consist of isomorphous 1-D polymeric structures based on the alternation of {Fe(L-1)}(2+) and {M(CN)(8)}(4-) units (L-1 stands for the pentadentate macrocycle). Analysis of the magnetic susceptibility behavior revealed cyano-bridged {Fe-Nb} exchange interaction to be antiferromagnetic with J = -20 cm(-1) deduced from fitting an Ising model taking into account the noncollinear spin arrangement. For this ferrimagnetic chain a slow relaxation of its magnetization is observed at low temperature revealing a SCM behavior with Delta/k(B) = 74 K and tau(0) = 4.6 x 10(-11) s. The M versus H behavior exhibits a hysteresis loop with a coercive field of 4 kOe at 1 K and reveals at 380 mK magnetic avalanche processes, i.e., abrupt reversals in magnetization as H is varied. The origin of these characteristics is attributed to the combination of efficient {Fe-Nb} exchange interaction and significant anisotropy of the {Fe(L-1)) unit. High field EPR and magnetization experiments have revealed for the parent compound [Fe(L-1)(H2O)(2)]Cl-2 a negative zero field splitting parameter of D approximate to -17 cm(-1). The crystal structure, magnetic behavior, and Mossbauer data for [Fe(L-1)(H2O)(2)]Cl-2 are also reported.
Resumo:
Nonconventional heptacoordination in combination with efficient magnetic exchange coupling is shown to yield a 1-D heteronuclear {(FeNbIV)-Nb-II} compound with remarkable magnetic features when compared to other Fe(II)-based single chain magnets (SCM). Cyano-bridged heterometallic {3d-4d} and {3d-5d} chains are formed upon assembling Fe(II) bearing a pentadentate macrocycle as the blocking ligand with octacyano metallates, [M(CN)(8)](4-) (M = Nb-IV, Mo-IV, W-IV.) X-ray diffraction (single-crystal and powder) measurements reveal that the [{(H2O)Fe(L-1)}{M(CN)(8)}{Fe(L-1)}](infinity) architectures consist of isomorphous 1-D polymeric structures based on the alternation of {Fe(L-1)}(2+) and {M(CN)(8)}(4-) units (L-1 stands for the pentadentate macrocycle). Analysis of the magnetic susceptibility behavior revealed cyano-bridged {Fe-Nb} exchange interaction to be antiferromagnetic with J = -20 cm(-1) deduced from fitting an Ising model taking into account the noncollinear spin arrangement. For this ferrimagnetic chain a slow relaxation of its magnetization is observed at low temperature revealing a SCM behavior with Delta/k(B) = 74 K and tau(0) = 4.6 x 10(-11) s. The M versus H behavior exhibits a hysteresis loop with a coercive field of 4 kOe at 1 K and reveals at 380 mK magnetic avalanche processes, i.e., abrupt reversals in magnetization as H is varied. The origin of these characteristics is attributed to the combination of efficient {Fe-Nb} exchange interaction and significant anisotropy of the {Fe(L-1)) unit. High field EPR and magnetization experiments have revealed for the parent compound [Fe(L-1)(H2O)(2)]Cl-2 a negative zero field splitting parameter of D approximate to -17 cm(-1). The crystal structure, magnetic behavior, and Mossbauer data for [Fe(L-1)(H2O)(2)]Cl-2 are also reported.
Resumo:
Oxovanadium(IV) complexes [VO(sal-argH)(B)] Cl (1-3) and [VO(sal-lysH)(B)] Cl (4-6), where sal-argH2 and sal-lysH(2) are N-salicylidene-L-arginine and N-salicylidene-L-lysine Schiff bases and B is a phenanthroline base, viz. 1,10-phenanthroline (phen in 1 and 4); dipyrido[3,2-d: 2', 3'-f] quinoxaline (dpq in 2 and 5) and dipyrido[3,2-a: 2', 3'-c] phenazine (dppz in 3 and 6), have been prepared, characterized and their DNA photocleavage activity studied. Complex 1, characterized by X-ray crystallography, shows the presence of a vanadyl group in VIVO3N3 coordination geometry with a tridentate Schiff base having a pendant guanidinium moiety and bidentate phen ligand. The complexes exhibit a d-d band at similar to 715 nm in 20% DMF-Tris-HCl buffer. The complexes are redox active showing cathodic and anodic responses near -1.0 V and 0.85 V (vs. SCE) for the V(IV)-V(III) and V(V)-V(IV) couples, respectively, in DMF-Tris-HCl buffer. The complexes bind to calf thymus DNA giving Kb values in the range of 3.8 x 10(4) to 1.6 x 10(5) M-1. Thermal denaturation and viscosity data suggest DNA groove binding nature of the complexes. The complexes do not show any `chemical nuclease'' activity in dark in the presence of 3-mercaptopropionic acid or H2O2. The dpq and dppz complexes are efficient photocleavers of plasmid DNA in UV-A (365 nm) and red light (676 nm) via singlet oxygen pathway. The dppz complexes exhibit photocytotoxicity in HeLa cancer cells giving IC50 values of 15.4 mu M for 3 and 17.5 mu M for 6 in visible light while being non-toxic in dark giving IC50 values of > 100 mu M.
Resumo:
A detailed single-crystal EPR study of phase IV of lithium potassium sulphate below -138 degrees C has been carried out using NH3+, which substitutes for K+, as the paramagnetic probe. The spin-Hamiltonian parameters have been evaluated at -140 degrees C and yield an isotropic g=2.0034; (AH)XX=(AH)YY=25.3 G and (AH)ZZ=23.8 G; (AN)XX=8.1 G, (AN)YY=21.2 G and (AN)ZZ=25.9 G. In this phase there are 12 magnetically inequivalent K+ sites and their occurrence is ascribed to the loss of a c glide.
Resumo:
The electrical resistivity of bulk GexTe100-x glasses has been measured as a function of temperature and pressure. Under high pressure, all the glasses were found to undergo sharp discontinuous transitions from glassy semiconductors to crystalline metal. Several of the observed properties such as the transition pressure, conductivity activation energy and pre-exponential factor, exhibit anomalous trends at a composition x = 20. These results suggest that the x = 20 composition in the Ge-Te system should possess salient structural features. A model based on the unusual stability of structural units is proposed for explaining the anomaly at 20 at.% Ge concentration.
Resumo:
Pure samples of pyridinium hexafluorotitanate(IV) [(C5H5N+H)2TiF=6] were prepared by the reaction of pyridinium poly(hydrogen fluoride) and titanium tetrachloride. The i.r. spectral data in the range 4000–200 cm−1 and 1H, 19F, and 13CNMR spectra for this compound are reported.
Resumo:
It has been possible to identify two critical compositions in the IV-VI chalcogenide glassy system GexSe100-x by the anomalous variations of the high-pressure electrical resistivity behavior. The first critical composition, the chemical threshold, refers to the stoichiometric composition. The second critical composition, identified recently as the mechanical percolation threshold, is connected with the structural rigidity of the material.
Resumo:
Oxovanadium(IV) complexes VO(L)(B)] (1-3), where H2L is a Schiff base ligand 2-(2-hydroxybenzylideneamino) phenol and B is 1,10-phenanthroline (phen for 1), dipyrido3,2-d:2',3'-f]quinoxaline (dpq for 2) or dipyrido3,2-a:2',3'-c]phenazine (dppz for 3), have been prepared, characterized and their DNA binding property and photo-induced DNA cleavage activity studied. Complex 3 which is structurally characterized by X-ray crystallography shows the presence of an oxovanadium(IV) moiety in a six coordinate VO3N3 coordination geometry. The complexes show a d-d band within 800-850 nm in DMF. The complexes display an oxidative response near 0.7 V versus SCE for V(V)-V(IV) and a reductive response within -1.1 to -1.3 V due to V(IV)-V(III) couple in DMF-0.1 M TBAP. The complexes are avid binders to calf thymus DNA giving binding constant values of 4.2 x 10(4) to 1.2 x 10(5) M (1). The complexes do not show any ``chemical nuclease'' activity in dark. The dpq and dppz complexes are photocleavers of plasmid DNA in UV-A light of 365 nm via O-1(2) pathway and in near-IR light (752.5 to 799.3 nm IR optics) by HO* pathway. Complex 3 exhibits significant photocytotoxicity in visible light in HeLa cells giving IC50 value of 13 mu M, while it is less toxic in dark (IC50 = 97 mu M). (C) 2010 Elsevier B.V. All rights reserved.