57 resultados para High repetition rate
Resumo:
Polycrystalline diamond coatings are grown on Si (100) substrate by hot filament CVD technique. We investigate here the effect of substrate roughening on the substrate temperature and methane concentration required to maintain high quality, high growth rate and faceted morphology of the diamond coatings. It has been shown that as we increase the substrate roughness from 0.05 mu m to 0.91 mu m (centre line average or CLA) there is enhancement in deposited film quality (Raman peak intensity ratio of sp (3) to non-sp (3) content increases from 1.65 to 7.13) and the substrate temperature can be brought down to 640A degrees C without any additional substrate heating. The coatings grown at adverse conditions for sp (3) deposition has cauliflower morphology with nanocrystalline grains and coatings grown under favourable sp (3) condition gives clear faceted grains.
Resumo:
Electrodeposited nanocrystalline Ni films were processed with different levels of S, to evaluate the role of S on superplasticity. All the materials exhibited high strain rate superplasticity at a relatively low temperature of 777 K. Microstructural characterization revealed that the S was converted to a Ni3S2 phase which melts at 908 K; no S could be detected at grain boundaries. There was no consistent variation in ductility with S content. Superplasticity was associated with a strain rate sensitivity of similar to 0.8 and an inverse grain size exponent of similar to 1 both of which are unusual observations in superplastic flow of metals. Based on the detailed experiments and analysis, it is concluded that superplasticity in nano-Ni is related to an interface controlled diffusion creep process, and it is not related to the presence of S at grain boundaries or a liquid phase at grain boundaries. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The evolution of microstructure and texture during room temperature compression of commercially pure Ti with four different initial orientations were studied under quasi-static and dynamic loading conditions. At a low strain rate (epsilon)over dot = 3 x 10(-4) s(-1) the different initial textures yielded the same end texture, despite different microstructural evolution in terms of twin boundaries. High strain rate deformation at (epsilon)over dot = 1.5 x 10(3) s(-1) was characterized by extensive twinning and evolution of a texture that was similar to that at low strain rate with minor differences. However, there was a significant difference in the strength of the texture for different orientations that was absent for low strain rate deformed samples at high strain rate. A viscoplastic self-consistent model with a secant approach was used to corroborate the experimental results by simulation. (C) 2011 Published by Elsevier Ltd. on behalf of Acta Materialia Inc.
Resumo:
OFHC copper pins with 10 ppm oxygen were slid against alumina at a load of 50 N and sliding speeds of 0.1 ms(-1) to 4.0 ms(-1) The wear characteristics of copper were related to the strain rate response of copper under uniaxial compression between strain rates of 0.1 s(-1) and 100 s(-1) and temperatures in the range of 298 K to 673 K. It is seen that copper undergoes flow banding at strain rates of 1 s(-1) up to a temperature of 523 K, which is the major instability in the region tested. These flow bands are regions of crack nucleation. The strain rates and temperatures existing in the subsurface of copper slid against alumina are estimated and superimposed on the strain rate response map of copper. The superposition shows that the subsurface of copper slid at low velocities is likely to exhibit flow band instability induced cracking. It is suggested that this is the,reason for the observed high wear rate at low velocities. The subsurface deformation with increasing velocity becomes more homogeneous. This reduces the wear rate. At velocities >2 ms(-1) there is homogenous flow and extrusion of thin (10 mu m) bands of material out of the trailing edge. This results in the gradual increase of wear rate with increasing velocity above 2.0 ms(-1).
Resumo:
In this study an atmospheric glow discharge with a fluorocarbon gas as precursor was used to modify the surface of polydimethyl siloxane (PDMS -(CH3)(2)SiO](n)-). The variation in protein immobilizing capability of PDMS was studied for different times of exposure. It was observed that the concentration of proteins adsorbed on the surface varied in an irregular manner with treatment time. The fluorination results in the formation of a thin film of fluorocarbon on the PDMS surface. The AFM and XPS data suggest that the film cracks due to stress and regains its uniformity thereafter. This Stranski-Krastanov growth model of the film was due to the high growth rate offered by atmospheric glow discharge. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
To meet the growing demands of the high data rate applications, suitable asynchronous schemes such as Fiber-Optic Code Division Multiple Access (FO-CDMA) are required in the last mile. FO-CDMA scheme offers potential benefits and at the same time it faces many challenges. Wavelength/Time (W/T) 2-D codes for use in FO-CDMA, can be classified mainly into two types: 1) hybrid codes and 2) matrix codes, to reduce the 'time' like property, have been proposed. W/T single-pulse-per-row (SPR) are energy efficient codes as this family of codes have autocorrelation sidelobes of '0', which is unique to this family and the important feature of the W/T multiple-pulses-per-row (MPR) codes is that the aspect ratio can be varied by trade off between wavelength and temporal lengths. These W/T codes have improved cardinality and spectral efficiency over other W/T codes and at the same time have lowest crosscorrelation values. In this paper, we analyze the performances of the FO-CDMA networks using W/T SPR codes and W/T MPR codes, with and without forward error correction (FEC) coding and show that with FEC there is dual advantage of error correction and reduced spread sequence length.
Resumo:
We develop a Gaussian mixture model (GMM) based vector quantization (VQ) method for coding wideband speech line spectrum frequency (LSF) parameters at low complexity. The PDF of LSF source vector is modeled using the Gaussian mixture (GM) density with higher number of uncorrelated Gaussian mixtures and an optimum scalar quantizer (SQ) is designed for each Gaussian mixture. The reduction of quantization complexity is achieved using the relevant subset of available optimum SQs. For an input vector, the subset of quantizers is chosen using nearest neighbor criteria. The developed method is compared with the recent VQ methods and shown to provide high quality rate-distortion (R/D) performance at lower complexity. In addition, the developed method also provides the advantages of bitrate scalability and rate-independent complexity.
Resumo:
We report on the formation of a stable Body-Centered Heptahedral (BCH) crystalline nanobridge structure of diameter ~ 1nm under high strain rate tensile loading to a <100> Cu nanowire. Extensive Molecular Dynamics (MD) simulations are performed. Six different cross-sectional dimensions of Cu nanowires are analyzed, i.e. 0.3615 x 0.3615 nm2, 0.723 x 0.723 nm2, 1.0845 x 1.0845 nm2, 1.446 x 1.446 nm2, 1.8075 x 1.8075 nm2, and 2.169 x 2.169 nm2. The strain rates used in the present simulations are 1 x 109 s-1, 1 x 108 s-1, and 1 x 107 s-1. We have shown that the length of the nanobridge can be characterized by larger plastic strain. A large plastic deformation is an indication that the structure is highly stable. The BCH nanobridge structure also shows enhanced mechanical properties such as higher fracture toughness and higher failure strain. The effect of temperature, strain rate and size of the nanowire on the formation of BCH structure is also explained in details. We also show that the initial orientation of the nanowires play an important role on the formation of BCH crystalline structure. Results indicate that proper tailoring of temperature and strain rate during processing or in the device can lead to very long BCH nanobridge structure of Cu with enhanced mechanical properties, which may find potential application for nano-scale electronic circuits.
Resumo:
Hydrogen is a clean energy carrier and highest energy density fuel. Water gas shift (WGS) reaction is an important reaction to generate hydrogen from steam reforming of CO. A new WGS catalyst, Ce(1-x)Ru(x)O(2-delta) (0 <= x <= 0.1) was prepared by hydrothermal method using melamine as a complexing agent. The Catalyst does not require any pre-treatment. Among the several compositions prepared and tested, Ce(0.95)Ru(0.05)O(2-delta) (5% Ru(4+) ion substituted in CeO(2)) showed very high WGS activity in terms of high conversion rate (20.5 mu mol.g(-1).s(-1) at 275 degrees C) and low activation energy (12.1 kcal/mol). Over 99% conversion of CO to CO(2) by H(2)O is observed with 100% H(2) selectivity at >= 275 degrees C. In presence of externally fed CO(2) and H(2) also, complete conversion of CO to CO(2) was observed with 100% H(2) selectivity in the temperature range of 305-385 degrees C. Catalyst does not deactivate in long duration on/off WGS reaction cycle due to absence of surface carbon and carbonate formation and sintering of Ru. Due to highly acidic nature of Ru(4+) ion, surface carbonate formation is also inhibited. Sintering of noble metal (Ru) is avoided in this catalyst because Ru remains in Ru(4+) ionic state in the Ce(1-x)Ru(x)O(2-delta) catalyst.
Resumo:
There is a large interest in biofuels in India as a substitute to petroleum-based fuels, with a purpose of enhancing energy security and promoting rural development. India has announced an ambitious target of substituting 20% of fossil fuel consumption by biodiesel and bioethanol by 2017. India has announced a national biofuel policy and launched a large program to promote biofuel production, particularly on wastelands: its implications need to be studied intensively considering the fact that India is a large developing country with high population density and large rural population depending upon land for their livelihood. Another factor is that Indian economy is experiencing high growth rate, which may lead to enhanced demand for food, livestock products, timber, paper, etc., with implications for land use. Studies have shown that area under agriculture and forest has nearly stabilized over the past 2-3 decades. This paper presents an assessment of the implications of projected large-scale biofuel production on land available for food production, water, biodiversity, rural development and GHG emissions. The assessment will be largely focused on first generation biofuel crops, since the Indian program is currently dominated by these crops. Technological and policy options required for promoting sustainable biofuel production will be discussed. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A detailed study of surface laser damage performed on a nonlinear optical crystal, urea L-malic acid, using 7 ns laser pulses at 10 Hz repetition rate from a Q-switched Nd:YAG laser at wavelengths of 532 and 1064 nm is reported. The single shot and multiple shot surface laser damage threshold values are determined to be 26.64±0.19 and 20.60±0.36 GW cm−2 at 1064 nm and 18.44±0.31 and 7.52±0.22 GW cm−2 at 532 nm laser radiation, respectively. The laser damage anisotropy is consistent with the Vickers mechanical hardness measurement performed along three crystallographic directions. The Knoop polar plot also reflects the damage morphology. Our investigation reveals a direct correlation between the laser damage profile and hardness anisotropy. Thermal breakdown of the crystal is identified as the possible mechanism of laser induced surface damage.
Resumo:
Nonlinear absorption and refraction characteristics of cesium lithium borate (CsLiB6O10) crystal have been studied using Z-scan technique. Ti:sapphire laser with 110 fs pulse width operating at 800 nm wavelength and pulse repetition rate of 1 kHz is used as the source of photons. Intensity of the laser pulse is varied from 0.541 to 1.283 T W/cm2 to estimate the intensity dependence of multiphoton absorption coefficients. Using the theory of multiphoton absorption proposed by Sutherland [ Handbook of Nonlinear Optics, in 2nd ed., edited by D. G. McLean and S. Kirkpatrick, Dekker, New York (2003) ], found that open aperture Z-scan data fit well for the five-photon absorption (5PA) process. 5PA coefficients are obtained by fitting the expressions into the open aperture experimental data for various peak intensities (I00). The nonlinear refractive index n2 estimated from closed aperture Z-scan experiment is 1.075×10−4 cm2/T W at an input peak intensity of 0.723 T W/cm2. The above experiment when repeated with a 532 nm, 6 ns pulsed laser led to an irreversible damage of the sample resulting in an asymmetric open aperture Z-scan profile. This indicates that it is not possible to observe multiphoton absorption in this regime of pulse width using 532 nm laser.
Resumo:
We address the problem of pricing defaultable bonds in a Markov modulated market. Using Merton's structural approach we show that various types of defaultable bonds are combination of European type contingent claims. Thus pricing a defaultable bond is tantamount to pricing a contingent claim in a Markov modulated market. Since the market is incomplete, we use the method of quadratic hedging and minimal martingale measure to derive locally risk minimizing derivative prices, hedging strategies and the corresponding residual risks. The price of defaultable bonds are obtained as solutions to a system of PDEs with weak coupling subject to appropriate terminal and boundary conditions. We solve the system of PDEs numerically and carry out a numerical investigation for the defaultable bond prices. We compare their credit spreads with some of the existing models. We observe higher spreads in the Markov modulated market. We show how business cycles can be easily incorporated in the proposed framework. We demonstrate the impact on spreads of the inclusion of rare states that attempt to capture a tight liquidity situation. These states are characterized by low risk-free interest rate, high payout rate and high volatility.
Resumo:
Droplet collision occurs frequently in regions where the droplet number density is high. Even for Lean Premixed and Pre-vaporized (LPP) liquid sprays, the collision effects can be very high on the droplet size distributions, which will in turn affect the droplet vaporization process. Hence, in conjunction with vaporization modeling, collision modeling for such spray systems is also essential. The standard O'Rourke's collision model, usually implemented in CFD codes, tends to generate unphysical numerical artifact when simulations are performed on Cartesian grid and the results are not grid independent. Thus, a new collision modeling approach based on no-time-counter method (NTC) proposed by Schmidt and Rutland is implemented to replace O'Rourke's collision algorithm to solve a spray injection problem in a cylindrical coflow premixer. The so called ``four-leaf clover'' numerical artifacts are eliminated by the new collision algorithm and results from a diesel spray show very good grid independence. Next, the dispersion and vaporization processes for liquid fuel sprays are simulated in a coflow premixer. Two liquid fuels under investigation are jet-A and Rapeseed Methyl Esters (RME). Results show very good grid independence in terms of SMD distribution, droplet number distribution and fuel vapor mass flow rate. A baseline test is first established with a spray cone angle of 90 degrees and injection velocity of 3 m/s and jet-A achieves much better vaporization performance than RME due to its higher vapor pressure. To improve the vaporization performance for both fuels, a series of simulations have been done at several different combinations of spray cone angle and injection velocity. At relatively low spray cone angle and injection velocity, the collision effect on the average droplet size and the vaporization performance are very high due to relatively high coalescence rate induced by droplet collisions. Thus, at higher spray cone angle and injection velocity, the results expectedly show improvement in fuel vaporization performance since smaller droplet has a higher vaporization rate. The vaporization performance and the level of homogeneity of fuel-air mixture can be significantly improved when the dispersion level is high, which can be achieved by increasing the spray cone angle and injection velocity. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Titania (TiO2) nano-photocatalysts, with different phases, prepared using a modified sol-gel process were employed in the degradation of rhodamine at 10 mg L-1 concentration. The degradation efficiency of these nano-photocatalysts was compared to that of commercial Degussa P25 titania. It was found that the nanocatalysts calcined at 450 degrees C and the Degussa P25 titania had similar photoreactivity profiles. The commercial Degussa P25 nanocatalysts had an overall high apparent rate constant of (K-app) of 0.023 min(-1). The other nanocatalyst had the following rate constants: 0.017, 0.0089, 0.003 and 0.0024 min(-1) for 450, 500, 550 and 600 degrees C calcined catalysts, respectively. This could be attributed to the phase of the titania as the anatase phase is highly photoactive than the other phases. Furthermore, characterisation by differential scanning calorimetry showed the transformation of titania from amorphous to anatase and finally to rutile phase. SEM and TEM characterisations were used to study the surface morphology and internal structure of the nanoparticles. BET results show that as the temperature of calcinations was raised, the surface area reduced marginally. X-ray diffraction was used to confirm the different phases of titania. This study has led to a conclusion that the anatase phase of the titania is the most photoactive nanocatalyst. It also had the highest apparent rate constant of 0.017 min(-1), which is similar to that of the commercial titania.