139 resultados para Heterogenous, Mesoscopic, Anisotropic, Control-Volume Finite-Element Method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lasers are very efficient in heating localized regions and hence they find a wide application in surface treatment processes. The surface of a material can be selectively modified to give superior wear and corrosion resistance. In laser surface-melting and welding problems, the high temperature gradient prevailing in the free surface induces a surface-tension gradient which is the dominant driving force for convection (known as thermo-capillary or Marangoni convection). It has been reported that the surface-tension driven convection plays a dominant role in determining the melt pool shape. In most of the earlier works on laser-melting and related problems, the finite difference method (FDM) has been used to solve the Navier Stokes equations [1]. Since the Reynolds number is quite high in these cases, upwinding has been used. Though upwinding gives physically realistic solutions even on a coarse grid, the results are inaccurate. McLay and Carey have solved the thermo-capillary flow in welding problems by an implicit finite element method [2]. They used the conventional Galerkin finite element method (FEM) which requires that the pressure be interpolated by one order lower than velocity (mixed interpolation). This restricts the choice of elements to certain higher order elements which need numerical integration for evaluation of element matrices. The implicit algorithm yields a system of nonlinear, unsymmetric equations which are not positive definite. Computations would be possible only with large mainframe computers.Sluzalec [3] has modeled the pulsed laser-melting problem by an explicit method (FEM). He has used the six-node triangular element with mixed interpolation. Since he has considered the buoyancy induced flow only, the velocity values are small. In the present work, an equal order explicit FEM is used to compute the thermo-capillary flow in the laser surface-melting problem. As this method permits equal order interpolation, there is no restriction in the choice of elements. Even linear elements such as the three-node triangular elements can be used. As the governing equations are solved in a sequential manner, the computer memory requirement is less. The finite element formulation is discussed in this paper along with typical numerical results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Finite Element Method (FEM) has made a number of otherwise intractable problems solvable. An important aspect for achieving an economical and accurate solution through FEM is matching the formulation and the computational organisation to the problem. This was realised forcefully in the present case of the solution of a class of moving contact boundary value problems of fastener joints. This paper deals with the problem of changing contact at the pin-hole interface of a fastener joint. Due to moving contact, the stresses and displacements are nonlinear with load. This would, in general, need an interactive-incremental approach for solution. However, by posing the problem in an inverse way, a solution is sought for obtaining loads to suit given contact configuration. Numerical results are given for typical isotropic and composite plates with rigid pins. Two cases of loading are considered: (i) load applied only at the edges of the plate and (ii) load applied at the pin and reacted at a part of the edge of the plate. Load-contact relationships, compliance and stress-patterns are investigated. This paper clearly demonstrates the simplification achieved by a suitable formulation of the problem. The results are of significance to the design and analysis of fastener joints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Finite Element Method (FEM) has made a number of otherwise intractable problems solvable. An important aspect for achieving an economical and accurate solution through FEM is matching the formulation and the computational organisation to the problem. This was realised forcefully in the present case of the solution of a class of moving contact boundary value problems of fastener joints. This paper deals with the problem of changing contact at the pin-hole interface of a fastener joint. Due to moving contact, the stresses and displacements are nonlinear with load. This would, in general, need an interactive-incremental approach for solution. However, by posing the problem in an inverse way, a solution is sought for obtaining loads to suit given contact configuration. Numerical results are given for typical isotropic and composite plates with rigid pins. Two cases of loading are considered: (i) load applied only at the edges of the plate and (ii) load applied at the pin and reacted at a part of the edge of the plate. Load-contact relationships, compliance and stress-patterns are investigated. This paper clearly demonstrates the simplification achieved by a suitable formulation of the problem. The results are of significance to the design and analysis of fastener joints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate, reliable and economical methods of determining stress distributions are important for fastener joints. In the past the contact stress problems in these mechanically fastened joints using interference or push or clearance fit pins were solved using both inverse and iterative techniques. Inverse techniques were found to be most efficient, but at times inadequate in the presence of asymmetries. Iterative techniques based on the finite element method of analysis have wider applications, but they have the major drawbacks of being expensive and time-consuming. In this paper an improved finite element technique for iteration is presented to overcome these drawbacks. The improved iterative technique employs a frontal solver for elimination of variables not requiring iteration, by creation of a dummy element. This automatically results in a large reduction in computer time and in the size of the problem to be handled during iteration. Numerical results are compared with those available in the literature. The method is used to study an eccentrically located pin in a quasi-isotropic laminated plate under uniform tension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reinforced concrete corbels have been analysed using the nonlinear finite element method. An elasto-plastic-cracking constitutive formulation using Huber-Hencky-Mises yield surface augmented with a tension cut-off is employed. Smeared-fixed cracking with mesh-dependent strain softening is employed to obtain objective results. Multiple non-orthogonal cracking and opening and closing of cracks are permitted. The model and the formulation are verified with respect to available numerical solution for an RC corbel. Results of analyses of nine reinforced concrete corbels are presented and compared with experimental results. Nonlinear finite element analysis of reinforced concrete structures is shown to be a complement and also a feasible alternative to laboratory testing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By using the strain smoothing technique proposed by Chen et al. (Comput. Mech. 2000; 25: 137-156) for meshless methods in the context of the finite element method (FEM), Liu et al. (Comput. Mech. 2007; 39(6): 859-877) developed the Smoothed FEM (SFEM). Although the SFEM is not yet well understood mathematically, numerical experiments point to potentially useful features of this particularly simple modification of the FEM. To date, the SFEM has only been investigated for bilinear and Wachspress approximations and is limited to linear reproducing conditions. The goal of this paper is to extend the strain smoothing to higher order elements and to investigate numerically in which condition strain smoothing is beneficial to accuracy and convergence of enriched finite element approximations. We focus on three widely used enrichment schemes, namely: (a) weak discontinuities; (b) strong discontinuities; (c) near-tip linear elastic fracture mechanics functions. The main conclusion is that strain smoothing in enriched approximation is only beneficial when the enrichment functions are polynomial (cases (a) and (b)), but that non-polynomial enrichment of type (c) lead to inferior methods compared to the standard enriched FEM (e.g. XFEM). Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new approach by making use of a hybrid method of using the displacement discontinuity element method and direct boundary element method to model concrete cracking by incorporating fictitious crack model. Fracture mechanics approach is followed using the Hillerborg's fictitious crack model. A boundary element based substructure method and a hybrid technique of using displacement discontinuity element method and direct boundary element method are compared in this paper. In order to represent the process zone ahead of the crack, closing forces are assumed to act in such a way that they obey a linear normal stress-crack opening displacement law. Plain concrete beams with and without initial crack under three-point loading were analyzed by both the methods. The numerical results obtained were shown to agree well with the results from existing finite element method. The model is capable of reproducing the whole range of load-deflection response including strain-softening and snap-back behavior as illustrated in the numerical examples. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composite-patching on cracked/weak metallic aircraft structures improves structural integrity. A Boron Epoxy patch employed to repair a cracked Aluminum sheet is modeled employing 3D Finite Element Method (FEM). SIFs extracted using ''displacement extrapolation'' are used to measure the repair effectiveness. Two issues viz., patch taper and symmetry have been looked into.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The propagation of axial waves in hyperelastic rods is studied using both time and frequency domain finite element models. The nonlinearity is introduced using the Murnaghan strain energy function and the equations governing the dynamics of the rod are derived assuming linear kinematics. In the time domain, the standard Galerkin finite element method, spectral element method, and Taylor-Galerkin finite element method are considered. A frequency domain formulation based on the Fourier spectral method is also developed. It is found that the time domain spectral element method provides the most efficient numerical tool for the problem considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An operator-splitting finite element method for solving high-dimensional parabolic equations is presented. The stability and the error estimates are derived for the proposed numerical scheme. Furthermore, two variants of fully-practical operator-splitting finite element algorithms based on the quadrature points and the nodal points, respectively, are presented. Both the quadrature and the nodal point based operator-splitting algorithms are validated using a three-dimensional (3D) test problem. The numerical results obtained with the full 3D computations and the operator-split 2D + 1D computations are found to be in a good agreement with the analytical solution. Further, the optimal order of convergence is obtained in both variants of the operator-splitting algorithms. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the wave propagation analysis of built-up composite structures is performed using frequency domain spectral finite elements, to study the high frequency wave responses. The paper discusses basically two methods for modeling stiffened structures. In the first method, the concept of assembly of 2D spectral plate elements is used to model a built-up structure. In the second approach, spectral finite element method (SFEM) model is developed to model skin-stiffener structures, where the skin is considered as plate element and the stiffener as beam element. The SFEM model developed using the plate-beam coupling approach is then used to model wave propagation in a multiple stiffened structure and also extended to model the stiffened structures with different cross sections such as T-section, I-section and hat section. A number of parametric studies are performed to capture the mode coupling, that is, the flexural-axial coupling present in the wave responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formulation of higher order structural models and their discretization using the finite element method is difficult owing to their complexity, especially in the presence of non-linearities. In this work a new algorithm for automating the formulation and assembly of hyperelastic higher-order structural finite elements is developed. A hierarchic series of kinematic models is proposed for modeling structures with special geometries and the algorithm is formulated to automate the study of this class of higher order structural models. The algorithm developed in this work sidesteps the need for an explicit derivation of the governing equations for the individual kinematic modes. Using a novel procedure involving a nodal degree-of-freedom based automatic assembly algorithm, automatic differentiation and higher dimensional quadrature, the relevant finite element matrices are directly computed from the variational statement of elasticity and the higher order kinematic model. Another significant feature of the proposed algorithm is that natural boundary conditions are implicitly handled for arbitrary higher order kinematic models. The validity algorithm is illustrated with examples involving linear elasticity and hyperelasticity. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work sets forth a `hybrid' discretization scheme utilizing bivariate simplex splines as kernels in a polynomial reproducing scheme constructed over a conventional Finite Element Method (FEM)-like domain discretization based on Delaunay triangulation. Careful construction of the simplex spline knotset ensures the success of the polynomial reproduction procedure at all points in the domain of interest, a significant advancement over its precursor, the DMS-FEM. The shape functions in the proposed method inherit the global continuity (Cp-1) and local supports of the simplex splines of degree p. In the proposed scheme, the triangles comprising the domain discretization also serve as background cells for numerical integration which here are near-aligned to the supports of the shape functions (and their intersections), thus considerably ameliorating an oft-cited source of inaccuracy in the numerical integration of mesh-free (MF) schemes. Numerical experiments show the proposed method requires lower order quadrature rules for accurate evaluation of integrals in the Galerkin weak form. Numerical demonstrations of optimal convergence rates for a few test cases are given and the method is also implemented to compute crack-tip fields in a gradient-enhanced elasticity model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schemes that can be proven to be unconditionally stable in the linear context can yield unstable solutions when used to solve nonlinear dynamical problems. Hence, the formulation of numerical strategies for nonlinear dynamical problems can be particularly challenging. In this work, we show that time finite element methods because of their inherent energy momentum conserving property (in the case of linear and nonlinear elastodynamics), provide a robust time-stepping method for nonlinear dynamic equations (including chaotic systems). We also show that most of the existing schemes that are known to be robust for parabolic or hyperbolic problems can be derived within the time finite element framework; thus, the time finite element provides a unification of time-stepping schemes used in diverse disciplines. We demonstrate the robust performance of the time finite element method on several challenging examples from the literature where the solution behavior is known to be chaotic. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schemes that can be proven to be unconditionally stable in the linear context can yield unstable solutions when used to solve nonlinear dynamical problems. Hence, the formulation of numerical strategies for nonlinear dynamical problems can be particularly challenging. In this work, we show that time finite element methods because of their inherent energy momentum conserving property (in the case of linear and nonlinear elastodynamics), provide a robust time-stepping method for nonlinear dynamic equations (including chaotic systems). We also show that most of the existing schemes that are known to be robust for parabolic or hyperbolic problems can be derived within the time finite element framework; thus, the time finite element provides a unification of time-stepping schemes used in diverse disciplines. We demonstrate the robust performance of the time finite element method on several challenging examples from the literature where the solution behavior is known to be chaotic. (C) 2015 Elsevier Inc. All rights reserved.