121 resultados para Hamiltonian
Resumo:
ESR investigations at X band and optical-absorption measurements have been reported in single crystals of copper (n) diethyldithiocarbamate Cu[S 2CN(C2H5)2]2 diluted to 0.2% with the corresponding zinc complex. The measurements have been made both at room and liquid-oxygen temperatures. ESR measurements gave the following values for the parameters in spin Hamiltonian g11=2.1085, g=2.023(6), A63= 142.4×10-4 cm-1, A65 = 152.0×10-4 cm-1, B = 22.4×10-4 cm-1, Q~3×10-4 cm-1. Polarized optical absorption study has made possible a proper assignment of the absorption bands to their corresponding transitions. This has led to information regarding the ordering of the MO levels of the complex. The coefficients used in the MO description of the complex have been calculated from the observed parameters. The results show that the metal ligand BIσ bond is purely covalent and that the out-of-plane w bonding is appreciably covalent whereas the in-plane Π bonding is ionic. Further, it is noted that the metal ligand binding is more covalent with sulfur as ligand than with oxygen or nitrogen.
Resumo:
We introduce a new class of clique separators, called base sets, for chordal graphs. Base sets of a chordal graph closely reflect its structure. We show that the notion of base sets leads to structural characterizations of planar k-trees and planar chordal graphs. Using these characterizations, we develop linear time algorithms for recognizing planar k-trees and planar chordal graphs. These algorithms are extensions of the Lexicographic_Breadth_First_Search algorithm for recognizing chordal graphs and are much simpler than the general planarity checking algorithm. Further, we use the notion of base sets to prove the equivalence of hamiltonian 2-trees and maximal outerplanar graphs.
Resumo:
The collisionless Boltzmann equation governing self-gravitating systems such as galaxies has recently been shown to admit exact oscillating solutions with planar and spherical symmetry. The relation of the spherically symmetric solutions to the Virial theorem, as well as generalizations to non-uniform spheres, uniform spheroids and discs form the subject of this paper. These models generalize known families of static solutions. The case of the spheroid is worked out in some detail. Quasiperiodic as well as chaotic time variation of the two axes is demonstrated by studying the surface of section for the associated Hamiltonian system with two degrees of freedom. The relation to earlier work and possible implications for the general problem of collisionless relaxation in self gravitating systems are also discussed.
Resumo:
A computational scheme has been developed for strongly interacting systems wherein the intermolecular interaction is introduced as a charge-induced-dipole term. Within this approximation, the model Hamiltonian is exactly solved using a valence-bond basis. The validity of the scheme has been checked by use of exact calculations on small model systems. The method has been applied to finite polyenes to study the shifts in the ground-state energies and dipole-allowed excited-state energies in the presence of neighbors. Our calculations show a red shift in the optical gap of the infinite polyene by 0.124 eV, which is rather small compared to the experimental red shift. This is traced to the larger inaccuracy in the calculated shift in the excited state. The calculated shift in the ground-state energies are more accurate and hence the method is better suited for studying the effect of intermolecular interactions on the properties of the ground state.
Resumo:
We calculate the binding energy of a hole pair within the extended Anderson Hamiltonian for the high-Tc cuprates including a Cu impurity and an oxygen-derived band. The results indicate that stable hole pairs can be formed for intra-atomic and interatomic Coulomb repulsion strengths larger than 6 and 3.5 eV, respectively. It is also shown that the total hybridization strength between the Cu 3d and oxygen p band should be less than 2.5 eV. The hole pairing takes place primarily within the oxygen-derived p band. The range of parameter values for which hole pairing occurs is also consistent with the earlier photoemission results from these cuprates.
Resumo:
Symmetrized density-matrix-renormalization-group calculations have been carried out, within Pariser-Parr-Pople Hamiltonian, to explore the nature of the ground and low-lying excited states of long polythiophene oligomers. We have exploited C-2 symmetry and spin parity of the system to obtain excited states of experimental interest, and studied the lowest dipole allowed excited state and lowest dipole forbidden two photon state, for different oligomer sizes. In the long system limit, the dipole allowed excited state always lies below the lowest dipole forbidden two-photon state which implies, by Kasha rule, that polythiophene fluoresces strongly. The lowest triplet state lies below two-photon state as usual in conjugated polymers. We have doped the system with a hole and an electron and obtained the charge excitation gap and the binding energy of the 1(1)B(u)(-) exciton. We have calculated the charge density of the ground, one-photon and two-photon states for the longer system size of 10 thiophene rings to characterize these states. We have studied bond order in these states to get an idea about the equilibrium excited state geometry of the system. We have also studied the charge density distribution of the singly and doubly doped polarons for longer system size, and observe that polythiophenes do not support bipolarons.
Resumo:
A one-dimensional arbitrary system with quantum Hamiltonian H(q, p) is shown to acquire the 'geometric' phase gamma (C)=(1/2) contour integral c(Podqo-qodpo) under adiabatic transport q to q+q+qo(t) and p to p+po(t) along a closed circuit C in the parameter space (qo(t), po(t)). The non-vanishing nature of this phase, despite only one degree of freedom (q), is due ultimately to the underlying non-Abelian Weyl group. A physical realisation in which this Berry phase results in a line spread is briefly discussed.
Resumo:
An attempt is made to study the Einstein relation for the diffusivity-to-mobility ratio (DMR) under crossed fields' configuration in nonlinear optical materials on the basis of a newly formulated electron dispersion law by incorporating the crystal field in the Hamiltonian and including the anisotropies of the effective electron mass and the spin-orbit splitting constants within the framework of kp formalisms. The corresponding results for III-V, ternary and quaternary compounds form a special case of our generalized analysis. The DMR has also been investigated for II-VI and stressed materials on the basis of various appropriate dispersion relations. We have considered n-CdGeAs2, n-Hg1-xCdxTe, n-In1-xGaxAsyP1-y lattice matched to InP, p-CdS and stressed n-InSb materials as examples. The DMR also increases with increasing electric field and the natures of oscillations are totally band structure dependent with different numerical values. It has been observed that the DMR exhibits oscillatory dependences with inverse quantizing magnetic field and carrier degeneracy due to the Subhnikov-de Haas effect. An experimental method of determining the DMR for degenerate materials in the present case has been suggested. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A detailed single-crystal EPR study of phase IV of lithium potassium sulphate below -138 degrees C has been carried out using NH3+, which substitutes for K+, as the paramagnetic probe. The spin-Hamiltonian parameters have been evaluated at -140 degrees C and yield an isotropic g=2.0034; (AH)XX=(AH)YY=25.3 G and (AH)ZZ=23.8 G; (AN)XX=8.1 G, (AN)YY=21.2 G and (AN)ZZ=25.9 G. In this phase there are 12 magnetically inequivalent K+ sites and their occurrence is ascribed to the loss of a c glide.
Resumo:
We point out that the Mooij correlation follows naturally from a dynamically disordered tight-binding Hamiltonian with random modulations of both the diagonal and the off-diagonal matrix elements which are known to act in opposition. The dynamic disorder is treated exactly while the static disorder is incorporated approximately as an effective additional time-dependent disorder affecting the diffusive electron. Such a time translation of static disorder is known to manifest itself in certain limits as a renormalization of the diffusion coefficient. The calculated conductivity exhibits the Mooij correlation at high temperatures, where quantum coherence associated with the static disorder can be ignored.
Resumo:
We establish the Poincaré invariance of anomalous gauge theories in two dimensions, for both the Abelian and non-Abelian cases, in the canonical Hamiltonian formalism. It is shown that, despite the noncovariant appearance of the constraints of these theories, Poincaré generators can be constructed which obey the correct algebra and yield the correct transformations in the constrained space.
Resumo:
We study charge pumping when a combination of static potentials and potentials oscillating with a time period T is applied in a one-dimensional system of noninteracting electrons. We consider both an infinite system using the Dirac equation in the continuum approximation and a periodic ring with a finite number of sites using the tight-binding model. The infinite system is taken to be coupled to reservoirs on the two sides which are at the same chemical potential and temperature. We consider a model in which oscillating potentials help the electrons to access a transmission resonance produced by the static potentials and show that nonadiabatic pumping violates the simple sin phi rule which is obeyed by adiabatic two-site pumping. For the ring, we do not introduce any reservoirs, and we present a method for calculating the current averaged over an infinite time using the time evolution operator U(T) assuming a purely Hamiltonian evolution. We analytically show that the averaged current is zero if the Hamiltonian is real and time-reversal invariant. Numerical studies indicate another interesting result, namely, that the integrated current is zero for any time dependence of the potential if it is applied to only one site. Finally we study the effects of pumping at two sites on a ring at resonant and nonresonant frequencies, and show that the pumped current has different dependences on the pumping amplitude in the two cases.
Resumo:
We study a one-dimensional version of the Kitaev model on a ring of size N, in which there is a spin S > 1/2 on each site and the Hamiltonian is J Sigma(nSnSn+1y)-S-x. The cases where S is integer and half-odd integer are qualitatively different. We show that there is a Z(2)-valued conserved quantity W-n for each bond (n, n + 1) of the system. For integer S, the Hilbert space can be decomposed into 2N sectors, of unequal sizes. The number of states in most of the sectors grows as d(N), where d depends on the sector. The largest sector contains the ground state, and for this sector, for S=1, d=(root 5+1)/2. We carry out exact diagonalization for small systems. The extrapolation of our results to large N indicates that the energy gap remains finite in this limit. In the ground-state sector, the system can be mapped to a spin-1/2 model. We develop variational wave functions to study the lowest energy states in the ground state and other sectors. The first excited state of the system is the lowest energy state of a different sector and we estimate its excitation energy. We consider a more general Hamiltonian, adding a term lambda Sigma W-n(n), and show that this has gapless excitations in the range lambda(c)(1)<=lambda <=lambda(c)(2). We use the variational wave functions to study how the ground-state energy and the defect density vary near the two critical points lambda(c)(1) and lambda(c)(2).
Resumo:
The thermodynamics of monodisperse solutions of polymers in the neighborhood of the phase separation temperature is studied by means of Wilson’s recursion relation approach, starting from an effective ϕ4 Hamiltonian derived from a continuum model of a many‐chain system in poor solvents. Details of the chain statistics are contained in the coefficients of the field variables ϕ, so that the parameter space of the Hamiltonian includes the temperature, coupling constant, molecular weight, and excluded volume interaction. The recursion relations are solved under a series of simplifying assumptions, providing the scaling forms of the relevant parameters, which are then used to determine the scaling form of the free energy. The free energy, in turn, is used to calculate the other singular thermodynamic properties of the solution. These are characteristically power laws in the reduced temperature and molecular weight, with the temperature exponents being the same as those of the 3d Ising model. The molecular weight exponents are unique to polymer solutions, and the calculated values compare well with the available experimental data.
Resumo:
We introduce a one-dimensional version of the Kitaev model consisting of spins on a two-legged ladder and characterized by Z(2) invariants on the plaquettes of the ladder. We map the model to a fermionic system and identify the topological sectors associated with different Z2 patterns in terms of fermion occupation numbers. Within these different sectors, we investigate the effect of a linear quench across a quantum critical point. We study the dominant behavior of the system by employing a Landau-Zener-type analysis of the effective Hamiltonian in the low-energy subspace for which the effective quenching can sometimes be non-linear. We show that the quenching leads to a residual energy which scales as a power of the quenching rate, and that the power depends on the topological sectors and their symmetry properties in a non-trivial way. This behavior is consistent with the general theory of quantum quenching, but with the correlation length exponent nu being different in different sectors. Copyright (C) EPLA, 2010