62 resultados para Halley’s and Euler-Chebyshev’s Methods


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Impedance matrix and transfer matrix methods are often used in the analysis of linear dynamical systems. In this paper, general relationships between these matrices are derived. The properties of the impedance matrix and the transfer matrix of symmetrical systems, reciprocal systems and conservative systems are investigated. In the process, the following observations are made: (a) symmetrical systems are not a subset of reciprocal systems, as is often misunderstood; (b) the cascading of reciprocal systems again results in a reciprocal system, whereas cascading of symmetrical systems does not necessarily result in a symmetrical system; (c) the determinant of the transfer matrix, being ±1, is a property of both symmetrical systems and reciprocal systems, but this condition, however, is not sufficient to establish either the reciprocity or the symmetry of the system; (d) the impedance matrix of a conservative system is skew-Hermitian.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The SCF/DZP and MP2/DZP methods of ab initio quantum chemistry have been utilized to study the structure, vibrational spectra, binding energy, and barrier to internal rotation of methyl isocyanide-borane and acetonitrile-borane adducts. The eclipsed conformation of the complexes was predicted to be a minimum, and the staggered form is a transition state with a barrier height of about 10 cal/mol. The vibrational analyses of CH3NC-BH3 and CH3CN-BH3 and several of their isotopomers have been carried out by the GF matrix method. Computations have also been carried out for free CH3NC and CH3CN in order to investigate the changes in CH3NC and CH3CN as a result of their complex formation with BH3. To obtain an acceptable set of force constants, a recently proposed procedure ''RECOVES'' has been utilized. The increase in the N=C/C=N stretching force constant of CH3NC/CH3CN on adduct formation is interpreted with the help of Parr and Borkman's model. The binding energies for the two adducts have been determined taking basis set superposition error (BSSE) into consideration. The effect of the BSSE on structure, dipole moment, and vibrational frequencies of CH3CN and CH3NC is also evaluated. The predicted infrared band intensities for the two complexes are in good agreement with the experimentally observed features, and they have been utilized in the assignment of vibrational frequencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The free-base, copper(II) and zinc(II) derivatives of 5,10,15,20-tetraarylporphyrin (aryl = phenyl, 4-methylphenyl or 4-chlorophenyl) and the corresponding brominated 2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetraarylporphyrin derivatives have been synthesized and their spectral and redox properties compared by UV/VIS, H-1 NMR, ESR and cyclic voltammetric methods. Substitution with the electron-withdrawing bromine groups at the pyrrole carbons has a profound influence on the UV/VIS and H-1 NMR spectral features and also on the redox potentials of these systems. On the other hand, electron-withdrawing chloro or electron-donating methyl groups at the para positions of the four phenyl rings have only a marginal effect on the spectra and redox potentials of both the brominated and the non-brominated derivatives. The ESR data for the copper(II) derivatives of ail these systems reveal that substitution at either the beta-pyrrole carbons and/or the para positions of the meso-phenyl groups does not significantly affect the spin-Hamiltonian parameters that describe the metal centre in each case. Collectively, these observations suggest that the highest-occupied (HOMO) and lowest-unoccupied molecular orbitals (LUMO) of the octabromoporphyrins involve the porphyrin pi-ring system as is the case with the non-brominated derivatives.-Investigations have been carried out to probe the electronic structures of these systems by three different approaches involving spectral and redox potential data as well as AMI calculations. The results obtained suggest that the electron-withdrawing beta-bromine substituents stabilize the LUMOs and, to a lesser degree, the HOMOs and that the extent of these changes can be fine-tuned, in a subtle way, by substituting at the meso-aryl rings of a given porphyrin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The linear quadridentate ligand N,N'-bis(benzimidazoI-2-ylethyl)ethane-l,2-diamine (L') and its 1 - methylbenzimidazole analogue (L2) and homologues form 1 : 1 complexes with Cu(CIO,),; L' also forms complexes of the types CuL'X, where X = NO,, PF,, Br or CI and CuL'(X)Y where X = CI or Br and Y = CIO, or Br. Deep blue CuL1Br,*2H20 crystallizes in the monoclinic space group C2/c with Z = 4, a = 9.91 9(2), b = 16.626(3), c = 14.1 02(3) le\ and p = 94.39(2)". The structure was solved by Patterson and Fourier difference methods and refined by the least-squares technique to R = 0.064 for 2195 independent reflections with / > 1.50(/). The molecule lies on a two-fold axis symmetrically around Cu". The co-ordination around Cu" is found to be square planar with two amino nitrogens and two benzimidazole nitrogens forming the equatorial plane [CU-N 1.983(3) and 2.037(4) A]. The bromides are at longer distances [3.349(1) A] in axial sites. Ligand field and EPR spectra indicate that one bromide or chloride ion is axially co-ordinated to Cu" in [CuL1l2+. This ion exhibits quasi-reversible redox behaviour. Electrochemical studies of the dihalides in methanol have established the presence of [CuL'X,], [CuL'(X)]+ and [CuL'I2+ in equilibrium. In complexes with 565 [CuL4I2+ [L4 = N,Nbis( benzimidazol-2-ylmethyl)ethane-l,2-diamine] and 555 [CuL3] [L3 = N,N'-bis(1 -methylbenzimidazol- 2-ylmethyl)propane-l,3-diamine] chelate rings, Cull does not seem to lie in the N, square plane, as revealed by their low A values and irreversible electrochemical behaviour. The Cu"-Cu' redox potentials in methanol are in the order [CuL1I2+ < [CuL3I2+ < [CuL4I2+; this illustrates that sixmembered chelate rings are suitable to stabilize Cu", when CU-N 0 interactions are favourable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of Li+ ions on the corrosion behaviour of the Al-Li alloy 8090-T851 and of commercially pure aluminium in aqueous solutions at pH 12 was studied by weight loss and electrochemical polarisation methods. The inhibiting role of Li+ was concentration dependent, corrosion rate decreasing lineally with log[Li+] in the concentration range 10(-4)-10(-1) mol L(-1). A change from general to pitting corrosion was evident from scanning election microscopy studies. Polarisation studies revealed that Li+ primarily acts as an anodic inhibitor (passivator). Passive film formation and stability also become more feasible with increasing Li+ concentration. Fitting potential was dependent on the Cl- ion concentration in the solution. Both materials were affected similarly by the presence of Li+ ions, the corrosion rate of the alloy being slightly lower. This is attributed to the lithium in the alloy acting as a source of lithium for passive film formation. (C) 1995 The Institute of Materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The antiparallel intramolecular G quartet structure for the 3.5 copy Oxytricha telomeric sequence d(G(4)T(4))(3)G4 has been established using a combination of spectroscopic and chemical probing methods. In the presence of Naf ions, this sequence exhibits a circular dichroism spectrum with a positive band at 295 nm and a negative band around 265 nm, characteristic of an antiparallel G quartet structure. Further, we show that d(G(4)T(4))(3)G(4) adopts an antiparallel intramolecular G quartet structure even in K+ unlike d(G(4)T(4)G(4)). KMnO4 probing experiments indicated the existence of intra and interloop interactions in the Na+ induced structure. We have found that K+ not only increases the thermal stability of,G quartet structure but also binds to the loop region and disrupts stacking and interloop interactions. Biological consequences of such cation-dependent conformational micro-heterogeneity in the loop region of G quartet structures is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two donor acceptor diketopyrrolopyrrole (DPP)-based copolymers (PDPP-BBT and TDPP-BBT) have been synthesized for their application in organic devices such as metal-insulator semiconductor (MIS) diodes and field-effect transistors (FETs). The semiconductor-dielectric interface was characterized by capacitance-voltage and conductance-voltage methods. These measurements yield an interface trap density of 4.2 x 10(12) eV(-1) cm(-2) in TDPP-BBT and 3.5 x 10(12) eV(-1) cm(-2) in PDPP-BBT at the flat-band voltage. The FETs based on these spincoated DPP copolymers display p-channel behavior with hole mobilities of the order 10(-3) cm(2)/(V s). Light scattering studies from PDPP-BBT FETs show almost no change in the Raman spectrum after the devices are allowed to operate at a gate voltage, indicating that the FETs suffer minimal damage due to the metal-polymer contact or the application of an electric field. As a comparison Raman intensity profile from the channel-Au contact layer in pentacene FETs are presented, which show a distinct change before and after biasing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study muon-spin rotation (mu SR) spectra in the mixed phase of highly anisotropic layered superconductors, specifically Bi2+xSr2-xCaCu2O8+delta (BSCCO), by modeling the fluid and solid phases of pancake Vortices using liquid-state and density functional methods. The role of thermal fluctuations in causing motional narrowing of mu SR line shapes is quantified in terms of a first-principles theory of the flux-lattice melting transition. The effects of random point pinning are investigated using a replica treatment of liquid-state correlations and a replicated density functional theory. Our results indicate that motional narrowing in the pure system, although substantial, cannot account for the remarkably small linewidths obtained experimentally at relatively high fields and low temperatures. We find that satisfactory agreement with the mu SR data for BSCCO in this regime can be obtained through the ansatz that this ''phase'' is characterized by frozen short-range positional correlations reflecting the structure of the liquid just above the melting transition. This proposal is consistent with recent suggestions of a ''pinned liquid'' or ''glassy'' state of pancake Vortices in the presence of pinning disorder. Our results for the high-temperature liquid phase indicate that measurable linewidths may be obtained in this phase as a consequence of density inhomogeneities induced by the pinning disorder. The results presented here comprise a unified, first-principles theoretical treatment of mu SR spectra in highly anisotropic layered superconductors in terms of a controlled set of approximations. [S0163-1829(99)08033-9].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fine particles of willemite, alpha -Zn2SiO4, were prepared by both solution combustion and sol-gel methods. Both processes yield single-phase, large-surface area (26- and 78-m(2)/g), sinteractive willemite powders. Thermal evolution of crystalline phases was studied using X-ray powder diffraction patterns. The combustion method favors low-temperature formation of willemite compared to the sol-gel method. The powders, when uniaxially pressed and sintered at 1300 degreesC, achieved 78-80% theoretical density. The microstructures of the sintered body show the presence of equiaxed 0.5- to 4-mum grains. Blue pigments of willemite doped with Co2+ and Ni2+ were also prepared by the combustion process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review the current status of various aspects of biopolymer translocation through nanopores and the challenges and opportunities it offers. Much of the interest generated by nanopores arises from their potential application to third-generation cheap and fast genome sequencing. Although the ultimate goal of single-nucleotide identification has not yet been reached, great advances have been made both from a fundamental and an applied point of view, particularly in controlling the translocation time, fabricating various kinds of synthetic pores or genetically engineering protein nanopores with tailored properties, and in devising methods (used separately or in combination) aimed at discriminating nucleotides based either on ionic or transverse electron currents, optical readout signatures, or on the capabilities of the cellular machinery. Recently, exciting new applications have emerged, for the detection of specific proteins and toxins (stochastic biosensors), and for the study of protein folding pathways and binding constants of protein-protein and protein-DNA complexes. The combined use of nanopores and advanced micromanipulation techniques involving optical/magnetic tweezers with high spatial resolution offers unique opportunities for improving the basic understanding of the physical behavior of biomolecules in confined geometries, with implications for the control of crucial biological processes such as protein import and protein denaturation. We highlight the key works in these areas along with future prospects. Finally, we review theoretical and simulation studies aimed at improving fundamental understanding of the complex microscopic mechanisms involved in the translocation process. Such understanding is a pre-requisite to fruitful application of nanopore technology in high-throughput devices for molecular biomedical diagnostics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Respiratory irregularity has been previously reported in patients with panic disorder using time domain measures. However, the respiratory signal is not entirely linear and a few previous studies used approximate entropy (APEN), a measure of regularity of time series. We have been studying APEN and other nonlinear measures including a measure of chaos, the largest Lyapunov exponent (LLE) of heart rate time series, in some detail. In this study, we used these measures of respiration to compare normal controls (n = 18) and patients with panic disorder (n = 22) in addition to the traditional time domain measures of respiratory rate and tidal volume. Methods: Respiratory signal was obtained by the Respitrace system using a thoracic and an abdominal belt, which was digitized at 500 Hz. Later, the time series were constructed at 4 Hz, as the highest frequency in this signal is limited to 0.5 Hz. We used 256 s of data (1,024 points) during supine and standing postures under normal breathing and controlled breathing at 12 breaths/min. Results: APEN was significantly higher in patients in standing posture during normal as well as controlled breathing (p = 0.002 and 0.02, respectively). LLE was also significantly higher in standing posture during normal breathing (p = 0.009). Similarly, the time domain measures of standard deviations and the coefficient of variation (COV) of tidal volume (TV) were significantly higher in the patient group (p = 0.02 and 0.004, respectively). The frequency of sighs was also higher in the patient group in standing posture (p = 0.02). In standing posture, LLE (p < 0.05) as well as APEN (p < 0.01) contributed significantly toward the separation of the two groups over and beyond the linear measure, i.e. the COV of TV. Conclusion: These findings support the previously described respiratory irregularity in patients with panic disorder and also illustrate the utility of nonlinear measures such as APEN and LLE as additional measures toward a better understanding of the abnormalities of respiratory physiology in similar patient populations as the correlation between LLE, APEN and some of the time domain measures only explained up to 50-60% of the variation. Copyright (C) 2002 S. Karger AG, Basel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we incorporate a novel approach to synthesize a class of closed-loop feedback control, based on the variational structure assignment. Properties of a viscoelastic system are used to design an active feedback controller for an undamped structural system with distributed sensor, actuator and controller. Wave dispersion properties of onedimensional beam system have been studied. Efficiency of the chosen viscoelastic model in enhancing damping and stability properties of one-dimensional viscoelastic bar have been analyzed. The variational structure is projected on a solution space of a closed-loop system involving a weakly damped structure with distributed sensor and actuator with controller. These assign the phenomenology based internal strain rate damping parameter of a viscoelastic system to the usual elastic structure but with active control. In the formulation a model of cantilever beam with non-collocated actuator and sensor has been considered. The formulation leads to the matrix identification problem of two dynamic stiffness matrices. The method has been simplified to obtain control system gains for the free vibration control of a cantilever beam system with collocated actuator-sensor, using quadratic optimal control and pole-placement methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel method of representing rotation and its application to representing the ranges of motion of coupled joints in the human body, using planar maps. The present work focuses on the viability of this representation for situations that relied on maps on a unit sphere. Maps on a unit sphere have been used in diverse applications such as Gauss map, visibility maps, axis-angle and Euler-angle representations of rotation etc. Computations on a spherical surface are difficult and computationally expensive; all the above applications suffer from problems associated with singularities at the poles. There are methods to represent the ranges of motion of such joints using two-dimensional spherical polygons. The present work proposes to use multiple planar domain “cube” instead of a single spherical domain, to achieve the above objective. The parameterization on the planar domains is easy to obtain and convert to spherical coordinates. Further, there is no localized and extreme distortion of the parameter space and it gives robustness to the computations. The representation has been compared with the spherical representation in terms of computational ease and issues related to singularities. Methods have been proposed to represent joint range of motion and coupled degrees of freedom for various joints in digital human models (such as shoulder, wrist and fingers). A novel method has been proposed to represent twist in addition to the existing swing-swivel representation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerical modeling of saturated subsurface flow and transport has been widely used in the past using different numerical schemes such as finite difference and finite element methods. Such modeling often involves discretization of the problem in spatial and temporal scales. The choice of the spatial and temporal scales for a modeling scenario is often not straightforward. For example, a basin-scale saturated flow and transport analysis demands larger spatial and temporal scales than a meso-scale study, which in turn has larger scales compared to a pore-scale study. The choice of spatial-scale is often dictated by the computational capabilities of the modeler as well as the availability of fine-scale data. In this study, we analyze the impact of different spatial scales and scaling procedures on saturated subsurface flow and transport simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Condensation of water droplets during rapid evaporation of a polymer solution, under humid conditions, has been known to generate uniformly porous polymer films. Similar porous films are also formed when a solution of the polymer in THF containing small amounts of water, is allowed to evaporate rapidly under air flow; this suggests that water droplets may be formed during the final stages of film formation. In the presence of added surfactants, the interface of water droplets could become lined with the surfactants and consequently the internal walls of the pores generated, upon removal of the water, could become decorated with the hydrophilic head groups of the surfactant molecules. In a series of carefully designed experiments, we have examined the effect of added surfactants, both anionic and cationic, on the formation of porous PMMA films; the films were prepared by evaporating a solution of the polymer in THF containing controlled amounts of aqueous surfactant solutions. We observed that the average size of the pores decreases with increasing surfactant concentration, while it increases with increasing amounts of added water. The size of the pores and their distribution were examined using AFM and IR imaging methods. Although IR imaging possessed inadequate resolution to confirm the presence of surfactants at the pore surface, exchange of the inorganic counterion, such as the sodium-ion of SDS, with suitable ionic organic dyes permitted the unequivocal demonstration of the presence of the surfactants at the interface by the use of confocal fluorescence microscopy.