292 resultados para HYDROXIDE NANOPARTICLES
Resumo:
We show from conventional magnetization measurements that the charge order (CO) is completely suppressed in 10 nm Pr0.5Ca0.5MnO3 (PCMO 10) nanoparticles. Novel magnetization measurements, designed by a special high field measurement protocol, show that the dominant ground state magnetic phase is ferromagnetic-metallic (FM-M), which is an equilibrium phase, which coexists with the residual charge ordered anti-ferromagnetic phase (CO AFM) (an arrested phase) and exhibits the characteristic features of a `magnetic glassy state' at low temperatures. It is observed that there is a drastic reduction in the field required to induce the AFM to FM transition (similar to 5-6 T) compared to their bulk counterpart(similar to 27 T); this phase transition is of first order in nature, broad, irreversible and the coexisting phases are tunable with the cooling field. Temperature-dependent magneto-transport data indicate the occurrence of a size-induced insulator-metal transition (TM-I) and anomalous resistive hysteresis (R-H) loops, pointing out the presence of a mixture of the FM-M phase and AFM-I phase.
Resumo:
Owing to widespread applications, synthesis and characterization of silver nanoparticles is recently attracting considerable attention. Increasing environmental concerns over chemical synthesis routes have resulted in attempts to develop biomimetic approaches. One of them is synthesis using plant parts, which eliminates the elaborate process of maintaining the microbial culture and often found to be kinetically favourable than other bioprocesses. The present study deals with investigating the effect of process variables like reductant concentrations, reaction pH, mixing ratio of the reactants and interaction time on the morphology and size of silver nanoparticles synthesized using aqueous extract of Azadirachta indica (Neem) leaves. The formation of crystalline silver nanoparticles was confirmed using X-ray diffraction analysis. By means of UV spectroscopy, Scanning and Transmission Electron Microscopy techniques, it was observed that the morphology and size of the nanoparticles were strongly dependent on the process parameters. Within 4 h interaction period, nanoparticles below 20-nm-size with nearly spherical shape were produced. On increasing interaction time (ageing) to 66 days, both aggregation and shape anisotropy (ellipsoidal, polyhedral and capsular) of the particles increased. In alkaline pH range, the stability of cluster distribution increased with a declined tendency for aggregation of the particles. It can be inferred from the study that fine tuning the bioprocess parameters will enhance possibilities of desired nano-product tailor made for particular applications.
Resumo:
NiO has been synthesized by microwave-induced chemical synthesis route using metalorganic complex of nickel in a domestic-type microwave oven (2.45 GHz). A novel metalorganic complex of nickel, viz., a beta-ketoester of nickel, synthesized and characterized as apart of this work, was employed as the precursor material. We varied the experimental parameters, such as the choice of solvent and microwave power, to obtain nanoparticles of NiO. The NiO nanoparticles were characterized by XRD, SEM, and TEM. The particle size of the NiO was found to vary from 7-40 nm. The magnetic behavior of the nanoparticles of NiO was examined with a vibrating sample magnetometer, revealing that as the particle size diminishes, the magnetic ordering in NiO changes, leading to a small, measurable coercivity.
Resumo:
We describe the synthesis and structure of Barium sulfate nanoparticles by precipitation method in the presence of water soluble inorganic stabilizing agent, sodium hexametaphosphate, (NaPO3)(6). The structural parameters were refined by the Rietveld refinement method using powder X-ray diffraction data. Barium sulfate nanoparticles were crystallized in the orthorhombic structure with space group Pbnm (No. 62) having the lattice parameters a = 7.215(1) (angstrom), b = 8.949(1) (angstrom) and c = 5.501 (1) (angstrom) respectively. Transmission electron microscopy study reveals that the nanoparticles are size range, 30-50 nm. Fourier transform infrared spectra showed distinct absorption due to the SO42- moiety at 1115 and 1084 cm(-1) indicating formation of barium sulfate nanoparticles free from the phosphate group from the stabilizer used in the synthesis. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The synthesis of colloids of copper and zinc nanoparticles by solvated metal atom dispersion (SMAD) is described. The as-prepared colloids with a large size distribution of the particles are transformed into colloidal nanoparticles of a narrow size distribution by the digestive ripening process which involves refluxing the colloid at or near the boiling point of the solvent in the presence of a passivating ligand. The copper nanoparticles of 2.1 ± 0.3 nm and zinc nanoparticles of 3.9 ± 0.3 nm diameters have thus been obtained. Digestive ripening of the as-prepared copper and zinc colloids together in the presence of a passivating agent gave Cu@ZnO core−shell nanoparticles, with an average diameter of 3.0 ± 0.7 nm. Particles synthesized in this manner were characterized by UV−visible spectroscopy, high-resolution electron microscopy, energy-filtered electron microscopy, and powder X-ray diffraction methods which confirm the core−shell structure.
Resumo:
Multiwall carbon nanotubes (MWCNTs) were decorated with crystalline zinc oxide nanoparticles (ZnO NPs) by wet chemical route to form MWCNT/ZnO NPs hybrid. The hybrid sample was characterized by scanning and transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Electrical conductivity of the hybrid can be tuned by varying the ZnO NPs content in the hybrid. In order to investigate the effect of nanoparticles loading on the conduction of MWCNTs network, electrical conductivity studies have been carried out in the wide temperature range 1.5-300K. The electrical conductivity of the hybrid below 100K is explained with the combination of variable range hopping conduction and thermal fluctuation induced tunnelling model. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Here we report on the magnetic properties of iron carbide nanoparticles embedded in a carbon matrix. Granular distributions of nanoparticles in an inert matrix, of potential use in various applications, were prepared by pyrolysis of organic precursors using the thermally assisted chemical vapour deposition method. By varying the precursor concentration and preparation temperature, compositions with varying iron concentration and nanoparticle sizes were made. Powder x-ray diffraction, transmission electron microscopy and Mossbauer spectroscopy studies revealed the nanocrystalline iron carbide (Fe3C) presence in the partially graphitized matrix. The dependence of the magnetic properties on the particle size and temperature (10 K < T < 300 K) were studied using superconducting quantum interference device magnetometry. Based on the affect of surrounding carbon spins, the observed magnetic behaviour of the nanoparticle compositions, such as the temperature dependence of magnetization and coercivity, can be explained.
Resumo:
Properties of nanoparticles are size dependent, and a model to predict particle size is of importance. Gold nanoparticles are commonly synthesized by reducing tetrachloroauric acid with trisodium citrate, a method pioneered by Turkevich et al (Discuss. Faraday Soc. 1951, 11, 55). Data from several investigators that used this method show that when the ratio of initial concentrations of citrate to gold is varied from 0.4 to similar to 2, the final mean size of the particles formed varies by a factor of 7, while subsequent increases in the ratio hardly have any effect on the size. In this paper, a model is developed to explain this widely varying dependence. The steps that lead to the formation of particles are as follows: reduction of Au3+ in solution, disproportionation of Au+ to gold atoms and their nucleation, growth by disproportionation on particle surface, and coagulation. Oxidation of citrate results in the formation of dicarboxy acetone, which aids nucleation but also decomposes into side products. A detailed kinetic model is developed on the basis of these steps and is combined with population balance to predict particle-size distribution. The model shows that, unlike the usual balance between nucleation and growth that determines the particle size, it is the balance between rate of nucleation and degradation of dicarboxy acetone that determines the particle size in the citrate process. It is this feature that is able to explain the unusual dependence of the mean particle size on the ratio of citrate to gold salt concentration. It is also found that coagulation plays an important role in determining the particle size at high concentrations of citrate.
Resumo:
We report the results of an in situ small-angle x-ray scattering (SAXS) study of the aggregation of gold nanoparticles formed by an interfacial reaction at the toluene-water interface. The SAXS data provide a direct evidence for aggregate formation of nanoparticles having 1.3 nm gold core and an organic shell that gives a core-core separation of about 2.5 nm. Furthermore, the nanoparticles do not occupy all the cites of 13-member cluster. This occupancy decreases with reaction time and indicate reorganization of the clusters that generates planner disklike structures. A gradual increase in fractal dimension from 1.82 to 2.05 also indicate compactification of cluster aggregation with reaction time, the final exponent being close to 2 expected for disklike aggregates.
Resumo:
Metal nanoparticles (NPs) of Cu(air-stable),Ag,and Au have been prepared using an atom-economy green approach Simple mechanical stirring of solid mixtures (no solvent) of a metal salt and ammonia borane at 60 degrees C resulted in the formation of metal NPs. In this reaction, ammonia borane is transformed into a BNHx polymer, which protects the NPs formed and halts their growth. This results in the formation of the BNHx polymer protected monodisperse NPs Thus, ammonia borane used in these reactions plays a dual role (reducing agent andprecursor for the stabilizing agent).
Resumo:
Hydrothermal treatment of a slurry of badly crystalline (beta(bc)) nickel hydroxide at different temperatures (65-170 degrees C) results in the progressive ordering of the structure by the step-wise elimination of disorders. Interstratification is eliminated at 140 degrees C, while cation vacancies are eliminated at 170 degrees C. A small percentage of stacking faults continue to persist even in `crystalline' samples. Electrochemical investigations show that the crystalline nickel hydroxide has a very low (0.4 e/Ni) reversible charge storage capacity. An incidence of at least 15% stacking faults combined with cation vacancies is essential for nickel hydroxide to perform close to its theoretical (1 e/ Ni) discharge capacity. (c) 2005 The Electrochemical Society.
Resumo:
Biofunctionalization of noble metal nanoparticles like Ag, Au is essential to obtain biocompatibility for specific biomedical applications. Silver nanciparticles are being increasingly used in bio-sensing applications owing to excellent optoelectronic properties. Among the serum albumins, the most abundant proteins in plasma, a wide range of physiological functions of Bovine Serum Albumin (BSA) has made it a model system for biofunctionalization. In absence of adequate prior reports, this study aims to investigate the interaction between silver nanoparticles and BSA. The interaction of BSA [0.05-0.85% concentrations] with Ag nanoparticles [50 ppm concentration] in aqueous dispersion was Studied through UV-vis spectral changes, morphological and surface structural changes. At pH 7, which is More than the isoelectric point of BSA, a decrease in absorbance at plasmon peak of uninteracted nanciparticles (425 mn) was noted till 0.45% BSA, beyond that a blue shift towards 410 urn was observed. The blue shift may be attributed to enhanced electron density on the particle surfaces. Increasing pH to 12 enhanced the blue shift further to 400 rim. The conformational changes in BSA at alkaline pH ranges and consequent hydrophobic interactions also played an important role. The equilibrium adsorption data fitted better to Freundlich isotherm compared to Langmuir Curve. The X-ray diffraction study revealed complete coverage of Ag nanoparticles by BSA. The scanning electron microscopic study of the interacted nanoparticles was also carried Out to decipher morphological changes. This study established that tailoring the concentration of BSA and pH of the interaction it was possible to reduce aggregation of nanoparticles. Biofunctionalized Ag nanoparticles with reduced aggregation will be more amenable towards bio-sensing applications. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The reversible chemical reaction of Ca(OH)2/CaO appears to be attractive for storage of solar thermal energy, in view of the nonpolluting and nontoxic nature of the reactants. This paper presents some data on thermal decomposition of calcium hydroxide pellets along with its additives of aluminum, aluminum hydroxide, zinc, and copper. The addition of aluminum and zinc powder enhanced the rate of decomposition considerably at 450°C, but copper had no effect. Considerations on the effect of additives are also discussed in some detail, though their effects are not established with certainty. There is some evidence that heat transfer into the pellet, and the number of potential nucleation sites due to thermal stresses, influence the kinetics and mechanism of decomposition.
Resumo:
Nd0.5Ca0.5MnO3 nanoparticles (average diameter similar to 20 and 40 nm) are synthesized by the polymeric precursor sol-gel method and characterized by various physico-chemical techniques. Quite strikingly, in the 20 nm particles, the charge-ordered (CO) and the antiferromagnetic phases observed in the bulk below 250 K and 160 K, respectively, are completely absent. Instead, a ferromagnetic (FM) transition is observed at 95 K followed by an insulator-to-metal transition at 75 K. The 40 nm particles show a residual CO phase but a transition to the FM state also occurs, at a slightly higher temperature of 110 K.
Resumo:
Electrochemical oxidation of borohydride is studied on nanosized rhodium, iridium, and bimetallic rhodium-iridium catalysts supported onto Vulcan XC72R carbon. The catalysts are characterized by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy in conjunction with cyclic voltammetry and polarization studies. The studies reveal that a 20 wt % bimetallic Rh-Ir catalyst supported onto carbon (Rh-Ir/C) is quite effective for the oxidation of borohydride. Direct borohydride fuel cell with Rh-Ir/C as the anode catalyst and Pt/C as the cathode catalyst exhibits a peak power density of 270 mW/cm(2) at a load current density of 290 mA/cm(2) as against 200 mW/cm(2) at 225 mA/cm(2) for Rh/C and 140 mW/cm(2) at 165 mA/cm(2) for Ir/C while operating at 80 degrees C. The synergistic catalytic activity for the bimetallic Rh-Ir nanoparticles toward borohydride oxidation is corroborated by density-functional theory calculations using electron-localization function. (C) 2010 The Electrochemical Society. [DOI:10.1149/1.3442372] All rights reserved.