43 resultados para Greenschist regional metamorphism
Resumo:
Regionalization approaches are widely used in water resources engineering to identify hydrologically homogeneous groups of watersheds that are referred to as regions. Pooled information from sites (depicting watersheds) in a region forms the basis to estimate quantiles associated with hydrological extreme events at ungauged/sparsely gauged sites in the region. Conventional regionalization approaches can be effective when watersheds (data points) corresponding to different regions can be separated using straight lines or linear planes in the space of watershed related attributes. In this paper, a kernel-based Fuzzy c-means (KFCM) clustering approach is presented for use in situations where such linear separation of regions cannot be accomplished. The approach uses kernel-based functions to map the data points from the attribute space to a higher-dimensional space where they can be separated into regions by linear planes. A procedure to determine optimal number of regions with the KFCM approach is suggested. Further, formulations to estimate flood quantiles at ungauged sites with the approach are developed. Effectiveness of the approach is demonstrated through Monte-Carlo simulation experiments and a case study on watersheds in United States. Comparison of results with those based on conventional Fuzzy c-means clustering, Region-of-influence approach and a prior study indicate that KFCM approach outperforms the other approaches in forming regions that are closer to being statistically homogeneous and in estimating flood quantiles at ungauged sites. Key Points
Resumo:
Madurai Block, the largest crustal block in the Southern Granulite Terrane (SGT) of Peninsular India, preserves the imprints of multistage tectonic evolution. Here, we present U-Pb and Hf isotope data on zircons from a charnockite-granite suite in the north-western part of this block. The oscillatory zoning, and the LREE to HREE enriched patterns of the zircons with positive Ce and negative Eu anomalies suggest that the zircon cores are of magmatic origin, with ages in the range of 2634-2435 Ma implying Neoarchean-Paleoproterozoic magmatism followed by subsequent metamorphism and protocontinent formation in the north-western part of the Madurai Block. A regional 550-500 Ma metamorphic overprint is also preserved in the zircons coinciding with the final amalgamation of the Gondwana supercontinent. The Hf isotopic data suggest that the granite and charnockite were derived from isotopically heterogeneous juvenile crustal domains and the charnockites show a significant contribution of mantle-derived components. Therefore, the Hf isotopic data reflect mixing of crustal and mantle-derived sources for the generation of Neoarchean crust in the north-western Madurai Block, possibly in a suprasubduction zone setting during continent building processes. (c) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Precise information on streamflows is of major importance for planning and monitoring of water resources schemes related to hydro power, water supply, irrigation, flood control, and for maintaining ecosystem. Engineers encounter challenges when streamflow data are either unavailable or inadequate at target locations. To address these challenges, there have been efforts to develop methodologies that facilitate prediction of streamflow at ungauged sites. Conventionally, time intensive and data exhaustive rainfall-runoff models are used to arrive at streamflow at ungauged sites. Most recent studies show improved methods based on regionalization using Flow Duration Curves (FDCs). A FDC is a graphical representation of streamflow variability, which is a plot between streamflow values and their corresponding exceedance probabilities that are determined using a plotting position formula. It provides information on the percentage of time any specified magnitude of streamflow is equaled or exceeded. The present study assesses the effectiveness of two methods to predict streamflow at ungauged sites by application to catchments in Mahanadi river basin, India. The methods considered are (i) Regional flow duration curve method, and (ii) Area Ratio method. The first method involves (a) the development of regression relationships between percentile flows and attributes of catchments in the study area, (b) use of the relationships to construct regional FDC for the ungauged site, and (c) use of a spatial interpolation technique to decode information in FDC to construct streamflow time series for the ungauged site. Area ratio method is conventionally used to transfer streamflow related information from gauged sites to ungauged sites. Attributes that have been considered for the analysis include variables representing hydrology, climatology, topography, land-use/land- cover and soil properties corresponding to catchments in the study area. Effectiveness of the presented methods is assessed using jack knife cross-validation. Conclusions based on the study are presented and discussed. (C) 2015 The Authors. Published by Elsevier B.V.
Resumo:
Regional frequency analysis is widely used for estimating quantiles of hydrological extreme events at sparsely gauged/ungauged target sites in river basins. It involves identification of a region (group of watersheds) resembling watershed of the target site, and use of information pooled from the region to estimate quantile for the target site. In the analysis, watershed of the target site is assumed to completely resemble watersheds in the identified region in terms of mechanism underlying generation of extreme event. In reality, it is rare to find watersheds that completely resemble each other. Fuzzy clustering approach can account for partial resemblance of watersheds and yield region(s) for the target site. Formation of regions and quantile estimation requires discerning information from fuzzy-membership matrix obtained based on the approach. Practitioners often defuzzify the matrix to form disjoint clusters (regions) and use them as the basis for quantile estimation. The defuzzification approach (DFA) results in loss of information discerned on partial resemblance of watersheds. The lost information cannot be utilized in quantile estimation, owing to which the estimates could have significant error. To avert the loss of information, a threshold strategy (TS) was considered in some prior studies. In this study, it is analytically shown that the strategy results in under-prediction of quantiles. To address this, a mathematical approach is proposed in this study and its effectiveness in estimating flood quantiles relative to DFA and TS is demonstrated through Monte-Carlo simulation experiments and case study on Mid-Atlantic water resources region, USA. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The main objective of the paper is to develop a new method to estimate the maximum magnitude (M (max)) considering the regional rupture character. The proposed method has been explained in detail and examined for both intraplate and active regions. Seismotectonic data has been collected for both the regions, and seismic study area (SSA) map was generated for radii of 150, 300, and 500 km. The regional rupture character was established by considering percentage fault rupture (PFR), which is the ratio of subsurface rupture length (RLD) to total fault length (TFL). PFR is used to arrive RLD and is further used for the estimation of maximum magnitude for each seismic source. Maximum magnitude for both the regions was estimated and compared with the existing methods for determining M (max) values. The proposed method gives similar M (max) value irrespective of SSA radius and seismicity. Further seismicity parameters such as magnitude of completeness (M (c) ), ``a'' and ``aEuro parts per thousand b `` parameters and maximum observed magnitude (M (max) (obs) ) were determined for each SSA and used to estimate M (max) by considering all the existing methods. It is observed from the study that existing deterministic and probabilistic M (max) estimation methods are sensitive to SSA radius, M (c) , a and b parameters and M (max) (obs) values. However, M (max) determined from the proposed method is a function of rupture character instead of the seismicity parameters. It was also observed that intraplate region has less PFR when compared to active seismic region.
Resumo:
Carbon isotope compositions of carbonate rocks from similar to 2.7-Ga-old Neoarchean Vanivilas Formation of the Dharwar Supergroup presented earlier by us are re-evaluated in this study, besides oxygen isotope compositions of a few silica dolomite pairs. The purpose of such a revisit assumes significance in view of recent field evidences that suggest a glaciomarine origin for the matrix-supported conglomerate member, the Talya conglomerate, which underlies the carbonate rocks of the Vanivilas Formation. An in-depth analysis of carbon isotope data reveals preservation of their pristine character despite the rocks having been subjected to metamorphism to different degrees (from lower greenschist to lower amphibolite facies). The dolomitic member of Vanivilas Formation of Marikanive area is characterized by highly depleted delta C-13 value (up to -5 parts per thousand VPDB) and merits as the Indian example of ca. 2.7-Ga-old cap carbonate. This inference is further supported by estimated low temperature of equilibration documented by a few silica dolomite pairs from the Vanivilas Formation collected near Kalche area. These pairs show evidence for oxygen isotopic equilibrium at low temperatures (similar to 0-20 degrees C) with depleted water (delta O-18 = -21 parts per thousand to -15 parts per thousand VSMOW) of glacial origin. We propose that the mineral pairs were deposited during the deglaciation period when the ocean temperature was in its gradual restoration phase. The dolomite of Marikanive area is the first record of cap carbonates from the Indian subcontinent with Neoarchean antiquity.
Resumo:
Climate change is most likely to introduce an additional stress to already stressed water systems in developing countries. Climate change is inherently linked with the hydrological cycle and is expected to cause significant alterations in regional water resources systems necessitating measures for adaptation and mitigation. Increasing temperatures, for example, are likely to change precipitation patterns resulting in alterations of regional water availability, evapotranspirative water demand of crops and vegetation, extremes of floods and droughts, and water quality. A comprehensive assessment of regional hydrological impacts of climate change is thus necessary. Global climate model simulations provide future projections of the climate system taking into consideration changes in external forcings, such as atmospheric carbon-dioxide and aerosols, especially those resulting from anthropogenic emissions. However, such simulations are typically run at a coarse scale, and are not equipped to reproduce regional hydrological processes. This paper summarizes recent research on the assessment of climate change impacts on regional hydrology, addressing the scale and physical processes mismatch issues. Particular attention is given to changes in water availability, irrigation demands and water quality. This paper also includes description of the methodologies developed to address uncertainties in the projections resulting from incomplete knowledge about future evolution of the human-induced emissions and from using multiple climate models. Approaches for investigating possible causes of historically observed changes in regional hydrological variables are also discussed. Illustrations of all the above-mentioned methods are provided for Indian regions with a view to specifically aiding water management in India.
Resumo:
Land-use changes since the start of the industrial era account for nearly one-third of the cumulative anthropogenic CO2 emissions. In addition to the greenhouse effect of CO2 emissions, changes in land use also affect climate via changes in surface physical properties such as albedo, evapotranspiration and roughness length. Recent modelling studies suggest that these biophysical components may be comparable with biochemical effects. In regard to climate change, the effects of these two distinct processes may counterbalance one another both regionally and, possibly, globally. In this article, through hypothetical large-scale deforestation simulations using a global climate model, we contrast the implications of afforestation on ameliorating or enhancing anthropogenic contributions from previously converted (agricultural) land surfaces. Based on our review of past studies on this subject, we conclude that the sum of both biophysical and biochemical effects should be assessed when large-scale afforestation is used for countering global warming, and the net effect on global mean temperature change depends on the location of deforestation/afforestation. Further, although biochemical effects trigger global climate change, biophysical effects often cause strong local and regional climate change. The implication of the biophysical effects for adaptation and mitigation of climate change in agriculture and agroforestry sectors is discussed. center dot Land-use changes affect global and regional climates through both biochemical and biophysical process. center dot Climate effect from biophysical process depends on the location of land-use change. center dot Climate mitigation strategies such as afforestation/reforestation should consider the net effect of biochemical and biophysical processes for effective mitigation. center dot Climate-smart agriculture could use bio-geoengineering techniques that consider plant biophysical characteristics such as reflectivity and water use efficiency.
Resumo:
Scaling approaches are widely used by hydrologists for Regional Frequency Analysis (RFA) of floods at ungauged/sparsely gauged site(s) in river basins. This paper proposes a Recursive Multi-scaling (RMS) approach to RFA that overcomes limitations of conventional simple- and multi-scaling approaches. The approach involves identification of a separate set of attributes corresponding to each of the sites (being considered in the study area/region) in a recursive manner according to their importance, and utilizing those attributes to construct effective regional regression relationships to estimate statistical raw moments (SMs) of peak flows. The SMs are then utilized to arrive at parameters of flood frequency distribution and quantile estimate(s) corresponding to target return period(s). Effectiveness of the RMS approach in arriving at flood quantile estimates for ungauged sites is demonstrated through leave-one-out cross-validation experiment on watersheds in Indiana State, USA. Results indicate that the approach outperforms index-flood based Region-of-Influence approach, simple- and multi-scaling approaches and a multiple linear regression method. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The Nilgiri Block, southern India is an exhumed lower crust formed through arc magmatic processes in the Neoarchean. The main lithologies in this terrane include charnockites, gneisses, volcanic tuff, metasediments, banded iron formation and mafic-ultramafic bodies. Mafic-ultramafic rocks are present towards the northern and central part of the Nilgiri Block. We examine the evolution of these mafic granulites/metagabbros by phase diagram modeling and U-Pb sensitive high resolution ion microprobe (SHRIMP) dating. They consist of a garnet-clinopyroxene-plagioclase-hornblende-ilmenite +/- orthopyroxene +/- rutile assemblage. Garnet and clinopyroxene form major constituents with labradorite and orthopyroxene as the main mineral inclusions. Labradorite, identified using Raman analysis, shows typical peaks at 508 cm(-1), 479 cm(-1), 287 cm(-1) and 177 cm(-1). It is stable along with orthopyroxene towards the low-pressure high-temperature region of the granulite fades (M1 stage). Subsequently, orthopyroxene reacted with plagioclase to form the peak garnet + clinopyroxene + rutile assemblage (M2 stage). The final stage is represented by amphibolite facies-hornblende and plagioclase-rim around the garnet-clinopyroxene assemblage (M3 stage). Phase diagram modeling shows that these mafic granulites followed an anticlockwise P-T-t path during their evolution. The initial high-temperature metamorphism (M1 stage) was at 850-900 degrees C and similar to 9 kbar followed by high-pressure granulite fades metamorphism (M2 stage) at 850-900 degrees C and 14-15 kbar. U-Pb isotope studies of zircons using SHRIMP revealed late Neoarchean to early paleoproterozoic ages of crystallization and metamorphism respectively. The age data shows that these mafic granulites have undergone arc magmatism at ca. 25392 +/- 3 Ma and high-temperature, high-pressure metamorphism at ca. 2458.9 +/- 8.6 Ma. Thus our results suggests a late Neoarchean arc magmatism followed by early paleoproterozoic high-temperature, high-pressure granulite facies metamorphism due to the crustal thickening and suturing of the Nilgiri Block onto the Dharwar Craton. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Index-flood related regional frequency analysis (RFA) procedures are in use by hydrologists to estimate design quantiles of hydrological extreme events at data sparse/ungauged locations in river basins. There is a dearth of attempts to establish which among those procedures is better for RFA in the L-moment framework. This paper evaluates the performance of the conventional index flood (CIF), the logarithmic index flood (LIF), and two variants of the population index flood (PIF) procedures in estimating flood quantiles for ungauged locations by Monte Carlo simulation experiments and a case study on watersheds in Indiana in the U.S. To evaluate the PIF procedure, L-moment formulations are developed for implementing the procedure in situations where the regional frequency distribution (RFD) is the generalized logistic (GLO), generalized Pareto (GPA), generalized normal (GNO) or Pearson type III (PE3), as those formulations are unavailable. Results indicate that one of the variants of the PIF procedure, which utilizes the regional information on the first two L-moments is more effective than the CIF and LIF procedures. The improvement in quantile estimation using the variant of PIF procedure as compared with the CIF procedure is significant when the RFD is a generalized extreme value, GLO, GNO, or PE3, and marginal when it is GPA. (C) 2015 American Society of Civil Engineers.
Resumo:
The characteristics of neurological, psychiatric, developmental and substance-use disorders in low-and middle-income countries are unique and the burden that they have will be different from country to country. Many of the differences are explained by the wide variation in population demographics and size, poverty, conflict, culture, land area and quality, and genetics. Neurological, psychiatric, developmental and substance-use disorders that result from, or are worsened by, a lack of adequate nutrition and infectious disease still afflict much of sub-Saharan Africa, although disorders related to increasing longevity, such as stroke, are on the rise. In the Middle East and North Africa, major depressive disorders and post-traumatic stress disorder are a primary concern because of the conflict-ridden environment. Consanguinity is a serious concern that leads to the high prevalence of recessive disorders in the Middle East and North Africa and possibly other regions. The burden of these disorders in Latin American and Asian countries largely surrounds stroke and vascular disease, dementia and lifestyle factors that are influenced by genetics. Although much knowledge has been gained over the past 10 years, the epidemiology of the conditions in low-and middle-income countries still needs more research. Prevention and treatments could be better informed with more longitudinal studies of risk factors. Challenges and opportunities for ameliorating nervous-system disorders can benefit from both local and regional research collaborations. The lack of resources and infrastructure for health-care and related research, both in terms of personnel and equipment, along with the stigma associated with the physical or behavioural manifestations of some disorders have hampered progress in understanding the disease burden and improving brain health. Individual countries, and regions within countries, have specific needs in terms of research priorities.
Resumo:
The centromere, on which kinetochore proteins assemble, ensures precise chromosome segregation. Centromeres are largely specified by the histone H3 variant CENP-A (also known as Cse4 in yeasts). Structurally, centromere DNA sequences are highly diverse in nature. However, the evolutionary consequence of these structural diversities on de novo CENP-A chromatin formation remains elusive. Here, we report the identification of centromeres, as the binding sites of four evolutionarily conserved kinetochore proteins, in the human pathogenic budding yeast Candida tropicalis. Each of the seven centromeres comprises a 2 to 5 kb non-repetitive mid core flanked by 2 to 5 kb inverted repeats. The repeat-associated centromeres of C. tropicalis all share a high degree of sequence conservation with each other and are strikingly diverged from the unique and mostly non-repetitive centromeres of related Candida species-Candida albicans, Candida dubliniensis, and Candida lusitaniae. Using a plasmid-based assay, we further demonstrate that pericentric inverted repeats and the underlying DNA sequence provide a structural determinant in CENP-A recruitment in C. tropicalis, as opposed to epigenetically regulated CENP-A loading at centromeres in C. albicans. Thus, the centromere structure and its influence on de novo CENP-A recruitment has been significantly rewired in closely related Candida species. Strikingly, the centromere structural properties along with role of pericentric repeats in de novo CENP-A loading in C. tropicalis are more reminiscent to those of the distantly related fission yeast Schizosaccharomyces pombe. Taken together, we demonstrate, for the first time, fission yeast-like repeat-associated centromeres in an ascomycetous budding yeast.