36 resultados para Goodyear Atomic Corporation Strike, 1957.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multifrequency atomic force microscopy is a powerful nanoscale imaging and characterization technique that involves excitation of the atomic force microscope (AFM) probe and measurement of its response at multiple frequencies. This paper reports the design, fabrication, and evaluation of AFM probes with a specified set of torsional eigen-frequencies that facilitate enhancement of sensitivity in multifrequency AFM. A general approach is proposed to design the probes, which includes the design of their generic geometry, adoption of a simple lumped-parameter model, guidelines for determination of the initial dimensions, and an iterative scheme to obtain a probe with the specified eigen-frequencies. The proposed approach is employed to design a harmonic probe wherein the second and the third eigen-frequencies are the corresponding harmonics of the first eigen-frequency. The probe is subsequently fabricated and evaluated. The experimentally evaluated eigen-frequencies and associated mode shapes are shown to closely match the theoretical results. Finally, a simulation study is performed to demonstrate significant improvements in sensitivity to the second-and the third-harmonic spectral components of the tip-sample interaction force with the harmonic probe compared to that of a conventional probe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of inserting ultra-thin atomic layer deposited Al2O3 dielectric layers (1 nm and 2 nm thick) on the Schottky barrier behaviour for high (Pt) and low(Al) work function metals on n- and p-doped InGaAs substrates has been investigated. Rectifying behaviour was observed for the p-type substrates (both native oxide and sulphur passivated) for both the Al/p-InGaAs and Al/Al2O3/p-InGaAs contacts. The Pt contacts directly deposited on p-InGaAs displayed evidence of limited rectification which increased with Al2O3 interlayer thickness. Ohmic contacts were formed for both metals on n-InGaAs in the absence of an Al2O3 interlayer, regardless of surface passivation. However, limited rectifying behaviour was observed for both metals on the 2 nm Al2O3/n-InGaAs samples for the sulphur passivated InGaAs surface, indicating the importance of both surface passivation and the presence of an ultra-thin dielectric interlayer on the current-voltage characteristics displayed by these devices. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct measurement of three-dimensional (3-D) forces between an atomic force microscope (AFM) probe and the sample benefits diverse applications of AFM, including force spectroscopy, nanometrology, and manipulation. This paper presents the design and evaluation of a measurement system, wherein the deflection of the AFM probe is obtained at two points to enable direct measurement of all the three components of 3-D tip-sample forces in real time. The optimal locations for measurement of deflection on the probe are derived for a conventional AFM probe. Further, a new optimal geometry is proposed for the probe that enables measurement of 3-D forces with identical sensitivity and nearly identical resolution along all three axes. Subsequently, the designed measurement system and the optimized AFM probe are both fabricated and evaluated. The evaluation demonstrates accurate measurement of tip-sample forces with minimal cross-sensitivities. Finally, the real-time measurement system is employed as part of a feedback control system to regulate the normal component of the interaction force, and to perform force-controlled scribing of a groove on the surface of polymethyl methacrylate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Substrates for 2D materials are important for tailoring their fundamental properties and realizing device applications. Aluminum nitride (AIN) films on silicon are promising large-area substrates for such devices in view of their high surface phonon energies and reasonably large dielectric constants. In this paper epitaxial layers of AlN on 2 `' Si wafers have been investigated as a necessary first step to realize devices from exfoliated or transferred atomic layers. Significant thickness dependent contrast enhancements are both predicted and observed for monolayers of graphene and MoS2 on AlN films as compared to the conventional SiO2 films on silicon, with calculated contrast values approaching 100% for graphene on AlN as compared to 8% for SiO2 at normal incidences. Quantitative estimates of experimentally measured contrast using reflectance spectroscopy show very good agreement with calculated values. Transistors of monolayer graphene on AlN films are demonstrated, indicating the feasibility of complete device fabrication on the identified layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electromagnetic field produced by a lightning strike to ground causes significant induction to tall objects in the vicinity. The frequency of occurrence of such nearby ground strikes can be higher than the number of direct strikes. Therefore, a complete knowledge on these induced currents is of practical relevance. However, limited efforts towards the characterisation of such induced currents in tall down-conductors could be seen in the literature. Due to the intensification of the background field caused by the descending stepped leader, tall towers/down-conductors can launch upward leaders of significant length. The nonlinearity in the conductance of upward leader and the surrounding corona sheath can alter the characteristics of the induced currents. Preliminary aspects of this phenomenon have been studied by the author previously and the present work aims to perform a detailed investigation on the role of upward leaders in modifying the characteristics of the induced currents. A consistent model for the upward leader, which covers all the essential electrical aspects of the phenomena, is employed. A first order arc model for representing the conductance of upward leader and a field dependant quadratic conductivity model for the corona sheath is employed. The initial gradient in the upward leader and the field produced by the return stroke forms the excitation. The dynamic electromagnetic response is determined by solving the wave equation using thin-wire time-domain formulation. Simulations are carried out initially to ascertain the role of individual parameters, including the length of the upward leader. Based on the simulation results, it is shown that the upward leader enhances the induced current, and when significant in length, can alter the waveshape of induced current from bipolar oscillatory to unipolar. The duration of the induced current is governed by the length of upward leader, which in turn is dependant on the return stroke current and the effective length of the down-conductor. If the current during the upward leader developmental phase is considered along with that after the stroke termination to ground, it would present a bipolar current pulse. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomic force Microscopy (AFM) has become a versatile tool in biology due to its advantage of high-resolution imaging of biological samples close to their native condition. Apart from imaging, AFM can also measure the local mechanical properties of the surfaces. In this study, we explore the possibility of using AFM to quantify the rough eye phenotype of Drosophila melanogaster through mechanical properties. We have measured adhesion force, stiffness and elastic modulus of the corneal lens using AFM. Various parameters affecting these measurements like cantilever stiffness and tip geometry are systematically studied and the measurement procedures are standardized. Results show that the mean adhesion force of the ommatidial surface varies from 36 nN to 16 nN based on the location. The mean stiffness is 483 +/- 5 N/m, and the elastic modulus is 3.4 +/- 0.05 GPa (95% confidence level) at the center of ommatidia. These properties are found to be different in corneal lens of eye expressing human mutant tau gene (mutant). The adhesion force, stiffness and elastic modulus are decreased in the mutant. We conclude that the measurement of surface and mechanical properties of D. melanogaster using AFM can be used for quantitative evaluation of `rough eye' surface. (C) 2015 Elsevier Ltd. All rights reserved.