116 resultados para General Linear Methods
Resumo:
The application of Gaussian Quadrature (GQ) procedures to the evaluation of i—E curves in linear sweep voltammetry is advocated. It is shown that a high degree of precision is achieved with these methods and the values obtained through GQ are in good agreement with (and even better than) the values reported in literature by Nicholson-Shain, for example. Another welcome feature with GQ is its ability to be interpreted as an elegant, efficient analytic approximation scheme too. A comparison of the values obtained by this approach and by a recent scheme based on series approximation proposed by Oldham is made and excellent agreement is shown to exist.
Resumo:
The third-kind linear integral equation Image where g(t) vanishes at a finite number of points in (a, b), is considered. In general, the Fredholm Alternative theory [[5.]] does not hold good for this type of integral equation. However, imposing certain conditions on g(t) and K(t, t′), the above integral equation was shown [[1.], 49–57] to obey a Fredholm-type theory, except for a certain class of kernels for which the question was left open. In this note a theory is presented for the equation under consideration with some additional assumptions on such kernels.
Resumo:
This paper considers the on-line identification of a non-linear system in terms of a Hammerstein model, with a zero-memory non-linear gain followed by a linear system. The linear part is represented by a Laguerre expansion of its impulse response and the non-linear part by a polynomial. The identification procedure involves determination of the coefficients of the Laguerre expansion of correlation functions and an iterative adjustment of the parameters of the non-linear gain by gradient methods. The method is applicable to situations involving a wide class of input signals. Even in the presence of additive correlated noise, satisfactory performance is achieved with the variance of the error converging to a value close to the variance of the noise. Digital computer simulation establishes the practicability of the scheme in different situations.
Resumo:
This paper deals with two approximate methods of finding the period of oscillations of non-linear conservative systems excited by step functions. The first method is an extension of the analysis presented by Jonckheere [4] and the second one is based on a weighted bilinear approximation of the non-linear characteristic. An example is presented and the approximate results are compared with the exact results
Resumo:
In this paper, the results on primal methods for Bottleneck Linear Programming (BLP) problem are briefly surveyed, the primal method is presented and the degenerate case related to Bottleneck Transportation Problem (BTP) is explicitly considered. The algorithm is based on the idea of using auxiliary coefficients as is done by Garfinkel and Rao [6]. The modification presented for the BTP rectifies the defect in Hammer's method in the case of degenerate basic feasible solution. Illustrative numerical examples are also given.
Resumo:
We explore here the acceleration of convergence of iterative methods for the solution of a class of quasilinear and linear algebraic equations. The specific systems are the finite difference form of the Navier-Stokes equations and the energy equation for recirculating flows. The acceleration procedures considered are: the successive over relaxation scheme; several implicit methods; and a second-order procedure. A new implicit method—the alternating direction line iterative method—is proposed in this paper. The method combines the advantages of the line successive over relaxation and alternating direction implicit methods. The various methods are tested for their computational economy and accuracy on a typical recirculating flow situation. The numerical experiments show that the alternating direction line iterative method is the most economical method of solving the Navier-Stokes equations for all Reynolds numbers in the laminar regime. The usual ADI method is shown to be not so attractive for large Reynolds numbers because of the loss of diagonal dominance. This loss can however be restored by a suitable choice of the relaxation parameter, but at the cost of accuracy. The accuracy of the new procedure is comparable to that of the well-tested successive overrelaxation method and to the available results in the literature. The second-order procedure turns out to be the most efficient method for the solution of the linear energy equation.
Resumo:
This paper is concerned with the analysis of the absolute stability of a non-linear autonomous system which consists of a single non-linearity belonging to a particular class, in an otherwise linear feedback loop. It is motivated from the earlier Popovlike frequency-domain criteria using the ' multiplier ' eoncept and involves the construction of ' stability multipliers' with prescribed phase characteristics. A few computer-based methods by which this problem can be solved are indicated and it is shown that this constitutes a stop-by-step procedure for testing the stability properties of a given system.
Resumo:
The theory of Varley and Cumberbatch [l] giving the intensity of discontinuities in the normal derivatives of the dependent variables at a wave front can be deduced from the more general results of Prasad which give the complete history of a disturbance not only at the wave front but also within a short distance behind the wave front. In what follows we omit the index M in Eq. (2.25) of Prasad [2].
Application of Laplace transform technique to the solution of certain third-order non-linear systems
Resumo:
A number of papers have appeared on the application of operational methods and in particular the Laplace transform to problems concerning non-linear systems of one kind or other. This, however, has met with only partial success in solving a class of non-linear problems as each approach has some limitations and drawbacks. In this study the approach of Baycura has been extended to certain third-order non-linear systems subjected to non-periodic excitations, as this approximate method combines the advantages of engineering accuracy with ease of application to such problems. Under non-periodic excitations the method provides a procedure for estimating quickly the maximum response amplitude, which is important from the point of view of a designer. Limitations of such a procedure are brought out and the method is illustrated by an example taken from a physical situation.
Resumo:
The surface water waves are "modal" waves in which the "physical space" (t, x, y, z) is the product of a propagation space (t, x, y) and a cross space, the z-axis in the vertical direction. We have derived a new set of equations for the long waves in shallow water in the propagation space. When the ratio of the amplitude of the disturbance to the depth of the water is small, these equations reduce to the equations derived by Whitham (1967) by the variational principle. Then we have derived a single equation in (t, x, y)-space which is a generalization of the fourth order Boussinesq equation for one-dimensional waves. In the neighbourhood of a wave froat, this equation reduces to the multidimensional generalization of the KdV equation derived by Shen & Keller (1973). We have also included a systematic discussion of the orders of the various non-dimensional parameters. This is followed by a presentation of a general theory of approximating a system of quasi-linear equations following one of the modes. When we apply this general method to the surface water wave equations in the propagation space, we get the Shen-Keller equation.
Resumo:
We investigate use of transverse beam polarization in probing anomalous coupling of a Higgs boson to a pair of vector bosons, at the International Linear Collider (ILC). We consider the most general form of V V H (V = W/Z) vertex consistent with Lorentz invariance and investigate its effects on the process e(+)e(-) -> f (f) over barH, f being a light fermion. Constructing observables with definite C P and naive time reversal ((T) over tilde) transformation properties, we find that transverse beam polarization helps us to improve on the sensitivity of one part of the anomalous Z Z H Coupling that is odd under C P. Even more importantly it provides the possibility of discriminating from each other, two terms in the general Z Z H vertex, both of which are even under C P and (T) over bar. Use of transversebeam polarization when combined with information from unpolarized and linearly polarized beams therefore, allows one to have completely independent probes of all the different parts of a general ZZH vertex.
Resumo:
In this paper, non-linear programming techniques are applied to the problem of controlling the vibration pattern of a stretched string. First, the problem of finding the magnitudes of two control forces applied at two points l1 and l2 on the string to reduce the energy of vibration over the interval (l1, l2) relative to the energy outside the interval (l1, l2) is considered. For this problem the relative merits of various methods of non-linear programming are compared. The more complicated problem of finding the positions and magnitudes of two control forces to obtain the desired energy pattern is then solved by using the slack unconstrained minimization technique with the Fletcher-Powell search. In the discussion of the results it is shown that the position of the control force is very important in controlling the energy pattern of the string.
Resumo:
Learning automata are adaptive decision making devices that are found useful in a variety of machine learning and pattern recognition applications. Although most learning automata methods deal with the case of finitely many actions for the automaton, there are also models of continuous-action-set learning automata (CALA). A team of such CALA can be useful in stochastic optimization problems where one has access only to noise-corrupted values of the objective function. In this paper, we present a novel formulation for noise-tolerant learning of linear classifiers using a CALA team. We consider the general case of nonuniform noise, where the probability that the class label of an example is wrong may be a function of the feature vector of the example. The objective is to learn the underlying separating hyperplane given only such noisy examples. We present an algorithm employing a team of CALA and prove, under some conditions on the class conditional densities, that the algorithm achieves noise-tolerant learning as long as the probability of wrong label for any example is less than 0.5. We also present some empirical results to illustrate the effectiveness of the algorithm.
Resumo:
We have purified phage lambda beta protein produced by a recombinant plasmid carrying bet gene and confirm that it forms a complex with a protein of relative molecular mass 70 kDa. Therefore, beta protein, a component of general genetic recombination, is associated with two functionally diverse complexes; one containing exonuclease and the other 70 kDa protein. Using a number of independent methods, we show that 70 kDa protein is the ribosomal S1 protein of E. coli. Further, the association of 70 kDa protein with beta protein is biologically significant, as the former inhibits joining of the terminal ends of lambda chromosome and renaturation of complementary single stranded DNA promoted by the latter. More importantly, these findings initiate an understanding of an important mode of host- virus interaction in general with specific implication(s) in homologous genetic recombination.
Resumo:
We report here the formation of plasmid linear multimers promoted by the Red-system of phage lambda using a multicopy plasmid comprised of lambda red alpha and red beta genes, under the control of the lambda cI857 repressor. Our observations have revealed that the multimerization of plasmid DNA is dependent on the red beta and recA genes, suggesting a concerted role for these functions in the formation of plasmid multimers. The formation of multimers occurred in a recBCD+ sbcB+ xthA+ lon genetic background at a higher frequency than in the isogenic lon+ host cells. The multimers comprised tandem repeats of monomer plasmid DNA. Treatment of purified plasmid DNA with exonuclease III revealed the presence of free double-chain ends in the molecules. Determination of the size of multimeric DNA, by pulse field gel electrophoresis, revealed that the bulk of the DNA was in the range 50-240 kb, representing approximately 5-24 unit lengths of monomeric plasmid DNA. We provide a conceptual framework for Red-system-promoted formation and enhanced accumulation of plasmid linear multimers in lon mutants of E. coli.