280 resultados para Fire resistant materials


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Friction characteristics of journal bearings made from cast graphic aluminum particulate composite alloy were determined under mixed lubrication and compared with those of the base alloy (without graphite) and leaded phosphor bronze. All three materials ran without seizure while the performance of the particulate composite and leaded phosphor bronze improved with running. Temperature rise in the journal bearing under mixed/boundary lubrication was also measured. It was found that with 0.3D/1000 to 1.5D/1000 clearance and a low lubrication rate (typical value for a bearing of diameter 35 mm × length 35 mm is 80 mm3/min) and at a PV value of 73 × 106 Nm m−2 min−1 graphitic aluminium alloy journal bearings operate satisfactorily without seizure and excessive temperature rise. In comparison, the bronze bearings, with all the other parameters remaining the same, could not run without excessive temperature rise at clearances below D/1000 at lubrication rates lower than 200 mm3/min

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-contained Non-Equilibrium Molecular Dynamics (NEMD) simulations using Lennard-Jones potentials were performed to identify the origin and mechanisms of atomic scale interfacial behavior between sliding metals. The mixing sequence and velocity profiles were compared via MD simulations for three cases, viz.: sell-mated, similar and hard-softvcrystal pairs. The results showed shear instability, atomic scale mixing, and generation of eddies at the sliding interface. Vorticity at the interface suggests that atomic flow during sliding is similar to fluid flow under Kelvin-Helmholtz instability and this is supported by velocity profiles from the simulations. The initial step-function velocity profile spreads during sliding. However the velocity profile does not change much at later stages of the simulation and it eventually stops spreading. The steady state friction coefficient during simulation was monitored as a function of sliding velocity. Frictional behavior can be explained on the basis of plastic deformation and adiabatic effects. The mixing layer growth kinetics was also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of Co4Sb12 with various In additions were studied. X-ray diffraction revealed the presence of the pure δ-phase of In0.16Co4Sb12, whereas impurity phases (γ-CoSb2 and InSb) appeared for x = 0.25, 0.40, 0.80, and 1.20. The homogeneity and morphology of the samples were observed by Seebeck microprobe and scanning electron microscopy, respectively. All the quenched ingots from which the studied samples were cut were inhomogeneous in the axial direction. The temperature dependence of the Seebeck coefficient (S), electrical conductivity (σ), and thermal conductivity (κ) was measured from room temperature up to 673 K. The Seebeck coefficient of all In-added Co4Sb12 materials was negative. When the filler concentration increases, the Seebeck coefficient decreases. The samples with In additions above the filling limit (x = 0.22) show an even lower Seebeck coefficient due to the formation of secondary phases: InSb and CoSb2. The temperature variation of the electrical conductivity is semiconductor-like. The thermal conductivity of all the samples decreases with temperature. The central region of the In0.4Co4Sb12 ingot shows the lowest thermal conductivity, probably due to the combined effect of (a) rattling due to maximum filling and (b) the presence of a small amount of fine-dispersed secondary phases at the grain boundaries. Thus, regardless of the non-single-phase morphology, a promising ZT (S 2 σT/κ) value of 0.96 at 673 K has been obtained with an In addition above the filling limit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The creep behaviour of a creep-resistant AE42 magnesium alloy reinforced with Saffil short fibres and SiC particulates in various combinations has been investigated in the transverse direction, i.e., the plane containing random fibre orientation was perpendicular to the loading direction, in the temperature range of 175-300 degrees C at the stress levels ranging from 60 to 140 MPa using impression creep test technique. Normal creep behaviour, i.e., strain rate decreasing with strain and then reaching a steady state, is observed at 175 degrees C at all the stresses employed, and up to 80 MPa stress at 240 degrees C. A reverse creep behaviour, i.e., strain rate increasing with strain, then reaching a steady state and then decreasing, is observed above 80 MPa stress at 240 degrees C and at all the stress levels at 300 degrees C. This pattern remains the same for all the composites employed. The reverse creep behaviour is found to be associated with fibre breakage. The apparent stress exponent is found to be very high for all the composites. However, after taking the threshold stress into account, the true stress exponent is found to range between 4 and 7, which suggests viscous glide and dislocation climb being the dominant creep mechanisms. The apparent activation energy Q(C) was not calculated due to insufficient data at any stress level either for normal or reverse creep behaviour. The creep resistance of the hybrid composites is found to be comparable to that of the composite reinforced with 20% Saffil short fibres alone at all the temperatures and stress levels investigated. The creep rate of the composites in the transverse direction is found to be higher than the creep rate in the longitudinal direction reported in a previous paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heat pipe is an innovative engineering structure characterized by its capacity to transfer large quantities of heat through relatively small cross-sectional areas with very small temperature differences; it also possesses high thermal conductance and low thermal impedance. In recent times, heat pipes in various forms and designs have found a wide variety of applications. This paper briefly presents the basic concepts of heat pipes, recent innovations in design and their applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cone penetrometer tests were carried out in a 140 mm diameter triaxial chamber by using a miniature cone of diameter 19.5 mm. The rate of cone penetration was varied from 0.01 mm/s to 0.1 mm/s. Tests were performed in (i) clean sand, (ii) silty sand, and (iii) sand added with fly ash. Two different effective vertical pressures (sigma(nu)), 100 kPa and 300 kPa, were employed. It was noted that for clean and silty sand, the effect of penetration rate on the ultimate tip resistance (q(cu)) of the cone was found to remain only marginal. On the other hand, for sand added with 30% fly ash, the variation in q(cu) values with penetration rate was found to become quite significant. The effect of penetratio rate on q(cu) in all the cases was found to increase with a decrease in the rate of cone penetration. It was noted that with an increase in sigma(nu), the effect of penetration rate on q(cu) was found to become smaller. The effect of the cone penetration rate on q(cu) generally reduces with an increase in the relative density of the material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis of fine particle α-alumina and related oxide materials such as MgAl2O4, CaAl2O4, Y3Al5O12 (YAG), Image , β′-alumina, LaAlO3 and ruby powder (Image ) has been achieved at low temperatures (500°C) by the combustion of corresponding metal nitrate-urea mixtures. Solid combustion products have been identified by their characteristic X-ray diffraction patterns. The fine particle nature of α-alumina and related oxide materials has been investigated using SEM, TEM, particle size analysis and surface area measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-molecular-mass organogelators (LMOGs) based on photochromic molecules aggregate in selected solvents to form gels through various spatio-temporal interactions. The factors that control the mode of aggregation of the chromophoric core in the LMOGs during gelation, gelation-induced changes in fluorescence, the formation of stacked superstructures of extended pi-conjugated systems, and so forth are discussed with selected examples. Possible ways of generating various light-harvesting assemblies are proposed, and some unresolved questions, future challenges, and their possible solutions on this topic are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an endless quest for new materials to meet the demands of advancing technology. Thus, we need new magnetic and metallic/semiconducting materials for spintronics, new low-loss dielectrics for telecommunication, new multi-ferroic materials that combine both ferroelectricity and ferromagnetism for memory devices, new piezoelectrics that do not contain lead, new lithium containing solids for application as cathode/anode/electrolyte in lithium batteries, hydrogen storage materials for mobile/transport applications and catalyst materials that can convert, for example, methane to higher hydrocarbons, and the list is endless! Fortunately for us, chemistry - inorganic chemistry in particular - plays a crucial role in this quest. Most of the functional materials mentioned above are inorganic non-molecular solids, while much of the conventional inorganic chemistry deals with isolated molecules or molecular solids. Even so, the basic concepts that we learn in inorganic chemistry, for example, acidity/basicity, oxidation/reduction (potentials), crystal field theory, low spin-high spin/inner sphere-outer sphere complexes, role of d-electrons in transition metal chemistry, electron-transfer reactions, coordination geometries around metal atoms, Jahn-Teller distortion, metal-metal bonds, cation-anion (metal-nonmetal) redox competition in the stabilization of oxidation states - all find crucial application in the design and synthesis of inorganic solids possessing technologically important properties. An attempt has been made here to illustrate the role of inorganic chemistry in this endeavour, drawing examples from the literature its well as from the research work of my group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic/inorganic hybrid gels have been developed in order to control the three-dimensional structure of photoactive nanofibers and metallic nanoparticles (NPs). These materials are prepared by simultaneous self-assembly of the 2,3-didecyloxyanthracene (DDOA) gelator and of thiol-capped gold nanoparticles (AuNPs). TEM and fluorescence measurements show that alkane-thiol capped AuNPs are homogeneously dispersed and tightly attached to the thermoreversible fibrillar network formed by the organogelator in n-butanol or n-decanol. Rheology and thermal stability measurements reveal moreover that the mechanical and thermal stabilities of the DDOA organogels are not significantly altered and that they remain strong, viscoelastic materials. The hybrid materials display a variable absorbance in the visible range because of the AuNPs, whereas the strong luminescence of the DDOA nanofibers is efficiently quenched by micromolar amounts of AuNPs. Besides, we obtained hybrid aerogels using supercritical CO2. These arc very low-density porous materials showing fibrillar networks oil which fluorinated gold NPs arc dispersed. These hybrid materials are of high interest because of their tunable optical properties and are under investigation for efficient light scattering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel low-temperature method of preparing bronzes of tungsten and vanadium and other reduced phases is reported.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient in vitro amino acid-incorporating system from Mycobacterium tuberculosis H37Rv was standardized. Ribonucleic acid (RNA) isolated from phage-infected M. smegmatis cells served as natural messenger RNA and directed the incorporation of 14C-amino acids into protein. The effects of various antitubercular drugs and “known inhibitors” of protein synthesis on amino acid incorporation were studied. Antibiotics like chloramphenicol and tetracycline inhibited mycobacterial protein synthesis, though they failed to prevent the growth of the organism. This failure was shown to be due to the impermeability of mycobacteria to these drugs by use of “membrane-active” agents along with the antibiotics in growth inhibition studies. Several independent streptomycin-resistant mutants of M. tuberculosis H37Rv were isolated. Streptomycin inhibited the incorporation of 14C-amino acids into proteins by whole cells of a streptomycin-susceptible strain by more than 90%, whereas very little or no inhibition was observed in either high-level or low-level streptomycin-resistant strains.