142 resultados para Finite-elements method
Resumo:
Uncertainties in complex dynamic systems play an important role in the prediction of a dynamic response in the mid- and high-frequency ranges. For distributed parameter systems, parametric uncertainties can be represented by random fields leading to stochastic partial differential equations. Over the past two decades, the spectral stochastic finite-element method has been developed to discretize the random fields and solve such problems. On the other hand, for deterministic distributed parameter linear dynamic systems, the spectral finite-element method has been developed to efficiently solve the problem in the frequency domain. In spite of the fact that both approaches use spectral decomposition (one for the random fields and the other for the dynamic displacement fields), very little overlap between them has been reported in literature. In this paper, these two spectral techniques are unified with the aim that the unified approach would outperform any of the spectral methods considered on their own. An exponential autocorrelation function for the random fields, a frequency-dependent stochastic element stiffness, and mass matrices are derived for the axial and bending vibration of rods. Closed-form exact expressions are derived by using the Karhunen-Loève expansion. Numerical examples are given to illustrate the unified spectral approach.
Resumo:
Real-time simulation of deformable solids is essential for some applications such as biological organ simulations for surgical simulators. In this work, deformable solids are approximated to be linear elastic, and an easy and straight forward numerical technique, the Finite Point Method (FPM), is used to model three dimensional linear elastostatics. Graphics Processing Unit (GPU) is used to accelerate computations. Results show that the Finite Point Method, together with GPU, can compute three dimensional linear elastostatic responses of solids at rates suitable for real-time graphics, for solids represented by reasonable number of points.
Resumo:
A finite element method for solving multidimensional population balance systems is proposed where the balance of fluid velocity, temperature and solute partial density is considered as a two-dimensional system and the balance of particle size distribution as a three-dimensional one. The method is based on a dimensional splitting into physical space and internal property variables. In addition, the operator splitting allows to decouple the equations for temperature, solute partial density and particle size distribution. Further, a nodal point based parallel finite element algorithm for multi-dimensional population balance systems is presented. The method is applied to study a crystallization process assuming, for simplicity, a size independent growth rate and neglecting agglomeration and breakage of particles. Simulations for different wall temperatures are performed to show the effect of cooling on the crystal growth. Although the method is described in detail only for the case of d=2 space and s=1 internal property variables it has the potential to be extendable to d+s variables, d=2, 3 and s >= 1. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The nonlocal term in the nonlinear equations of Kirchhoff type causes difficulties when the equation is solved numerically by using the Newton-Raphson method. This is because the Jacobian of the Newton-Raphson method is full. In this article, the finite element system is replaced by an equivalent system for which the Jacobian is sparse. We derive quasi-optimal error estimates for the finite element method and demonstrate the results with numerical experiments.
Resumo:
This paper presents a spectral finite element formulation for uniform and tapered rotating CNT embedded polymer composite beams. The exact solution to the governing differential equation of a rotating Euler-Bernoulli beam with maximum centrifugal force is used as an interpolating function for the spectral element formulation. Free vibration and wave propagation analysis is carried out using the formulated spectral element. The present study shows the substantial effect of volume fraction and L/D ratio of CNTs in a beam on the natural frequency, impulse response and wave propagation characteristics of the rotating beam. It is found that the CNTs embedded in the matrix can make the rotating beam non-dispersive in nature at higher rotation speeds. Embedded CNTs can significantly alter the dynamics of polymer-nanocomposite beams. The results are also compared with those obtained for carbon fiber reinforced laminated composite rotating beams. It is observed that CNT reinforced rotating beams are superior in performance compared to laminated composite rotating beams. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents the details of nonlinear finite element analysis (FEA) of three point bending specimens made up of high strength concrete (HSC, HSC1) and ultra high strength concrete (UHSC). Brief details about characterization and experimentation of HSC, HSC1 and UHSC have been provided. Cracking strength criterion has been used for simulation of crack propagation by conducting nonlinear FEA. The description about FEA using crack strength criterion has been outlined. Bi-linear tension softening relation has been used for modeling the cohesive stresses ahead of the crack tip. Numerical studies have been carried out on fracture analysis of three point bending specimens. It is observed from the studies that the computed values from FEA are in very good agreement with the corresponding experimental values. The computed values of stress vs crack width will be useful for evaluation of fracture energy, crack tip opening displacement and fracture toughness. Further, these values can also be used for crack growth study, remaining life assessment and residual strength evaluation of concrete structural components.
Resumo:
A rigorous lower bound solution, with the usage of the finite elements limit analysis, has been obtained for finding the ultimate bearing capacity of two interfering strip footings placed on a sandy medium. Smooth as well as rough footingsoil interfaces are considered in the analysis. The failure load for an interfering footing becomes always greater than that for a single isolated footing. The effect of the interference on the failure load (i) for rough footings becomes greater than that for smooth footings, (ii) increases with an increase in phi, and (iii) becomes almost negligible beyond S/B>3. Compared with various theoretical and experimental results reported in literature, the present analysis generally provides the lowest magnitude of the collapse load. Copyright (c) 2011 John Wiley & Sons, Ltd.
Resumo:
The horizontal pullout capacity of vertical anchors embedded in sand has been determined by using an upper bound theorem of the limit analysis in combination with finite elements. The numerical results are presented in nondimensional form to determine the pullout resistance for various combinations of embedment ratio of the anchor (H/B), internal friction angle (ϕ) of sand, and the anchor-soil interface friction angle (δ). The pullout resistance increases with increases in the values of embedment ratio, friction angle of sand and anchor-soil interface friction angle. As compared to earlier reported solutions in literature, the present solution provides a better upper bound on the ultimate collapse load.
Resumo:
In this work, we present a finite element formulation for the Saint-Venant torsion and bending problems for prismatic beams. The torsion problem formulation is based on the warping function, and can handle multiply-connected regions (including thin-walled structures), compound and anisotropic bars. Similarly, the bending formulation, which is based on linearized elasticity theory, can handle multiply-connected domains including thin-walled sections. The torsional rigidity and shear centers can be found as special cases of these formulations. Numerical results are presented to show the good coarse-mesh accuracy of both the formulations for both the displacement and stress fields. The stiffness matrices and load vectors (which are similar to those for a variable body force in a conventional structural mechanics problem) in both formulations involve only domain integrals, which makes them simple to implement and computationally efficient. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
A numerical formulation has been proposed for solving an axisymmetric stability problem in geomechanics with upper bound limit analysis, finite elements, and linear optimization. The Drucker-Prager yield criterion is linearized by simulating a sphere with a circumscribed truncated icosahedron. The analysis considers only the velocities and plastic multiplier rates, not the stresses, as the basic unknowns. The formulation is simple to implement, and it has been employed for finding the collapse loads of a circular footing placed over the surface of a cohesive-frictional material. The formulation can be used to solve any general axisymmetric geomechanics stability problem.