37 resultados para Family Stress
Resumo:
Compounds of the Y3-x Ba3+x Cu6O14+δ system, which YBa2Cu3O7-δ (x = 1) is member, have been prepared. A relatively low temperature nitrate decomposition method gives almost single phase compounds with tetragonal structure. The phases are metastable and show superconducting transitions (zero-resistance) around 50K.
Resumo:
N-linked glycosylation has a profound effect on the proper folding, oligomerization and stability of glycoproteins. These glycans impart many properties to proteins that may be important for their proper functioning, besides having a tendency to exert a chaperone-like effect on them. Certain glycosylation sites in a protein however, are more important than other sites for their function and stability. It has been observed that some N-glycosylation sites are conserved over families of glycoproteins over evolution, one such being the tyrosinase related protein family. The role of these conserved N-glycosylation sites in their trafficking, sorting, stability and activity has been examined here. By scrutinizing the different glycosylation sites on this family of glycoproteins it was inferred that different sites in the same family of polypeptides can perform distinct functions and conserved sites across the paralogues may perform diverse functions.
Resumo:
This paper reports an experimental investigation carried out, using the photoelastic technique, to determine the Mode I stress intensity factor in case of cracks of varying a/w ratio in single edge-notch specimens. The photoelastic information was analysed using the several methods proposed by earlier workers. The experimental results are compared with the analytical expressions.
Resumo:
The stress corrosion cracking (SCC) characteristics of agr-titanium sheets in a bromine-methanol solution have been studied in the annealed and cold-rolled conditions using longitudinal and transverse specimens. The times to failure for annealed longitudinal specimens were longer than those for similarly tested transverse specimens. The cold-rolled specimens developed resistance to SCC, but failed by cleavage when notched, unlike the intergranular separation in annealed titanium. The apparent activation energy was found to be texture dependent and was in the range 30 to 51 kJ mol–1 for annealed titanium, and 15kJ mol–1 for cold-rolled titanium. The dependence of SCC behaviour on the texture is related to the changes in the crack initiation times. These are caused by changes in the passivation and repassivation characteristics of the particular thickness plane. The thickness planes are identified with the help of X-ray pole figures obtained on annealed and cold-rolled material. On the basis of the activation energy and the electrochemical measurements, the mechanism of SCC in annealed titanium is identified to be the one involving stress-aided anodic dissolution. On the other hand, the results on the cold-rolled titanium are in support of the hydrogen embrittlement mechanism consisting of hydride precipitation. The cleavage planes identified from the texture data match with the reported habit planes for hydride formation.
Resumo:
Free proline content in Ragi (Eleusine coracana) leaves increased markedly (6 to 85 fold) as the degree of water stress, created by polyethylene gylcol treatment, was prolonged There was also a marginal increase in soluble proteins in the stressed leaves as compared to that in the controls. Water stress stimulated the activities of ornithine aminotransferase and pyrroline-5-carboxylate reductase, the enzymes of proline biosynthesis and markedly inhibited the enzymes involved in proline degradation viz., proline oxidase and pyrroline-5-carboxylate dehydrogenase. These results suggest that increase in free proline content of Ragi leaves could be due to enhanced activities of the enzymes synthesizing proline but more importantly due to severe inhibition of the enzymes degrading proline. These observations establish for the first time, the pathway of proline metabolism in plants by way of detection of the activities of all the enzymes involved and also highlight the role of these enzymes in proline accumulation during water stress.
Resumo:
An experimental investigation dealing with the influence of stress path on the shear behaviour of a layered soil prepared in the laboratory is described. Specimens trimmed in vertical and horizontal directions have been sheared under three different stress paths in compression and extension tests. Either in compression or extension, the stress–strain behaviour of the specimens with both orientations was apparently the same, although the volume change behaviour was different. The effective stress parameters C′ and ′ were found to be unique and independent of the stress path and two principal orientations. However, the values of ′ in extension tests were 6–7° higher than those in compression tests.
Resumo:
Background and Objective: Arecoline, an arecanut alkaloid present in the saliva of betel quid chewers, has been implicated in the pathogenesis of a variety of inflammatory oral diseases, including oral submucous fibrosis and periodontitis. To understand the molecular b asis of arecoline action in epithelial changes associated with these diseases, we investigated the effects of arecoline on human keratinocytes with respect to cell growth regulation and the expression of stress-responsive genes.Material and Methods:Human keratinocyte cells (of the HaCaT cell line) were treated with arecoline, following which cell viability was assessed using the Trypan Blue dye-exclusion assay, cell growth and proliferation were analyzed using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) and 5-bromo-2-deoxyuridine incorporation assays, cell cycle arrest and generation of reactive oxygen species were examined using flow cytometry, and gene expression changes were investigated using the reverse transcription-polymerase chain reaction technique. The role of oxidative stress, muscarinic acetylcholine receptor and mitogen-activated protein kinase (MAPK) pathways were studied using specific inhibitors. Western blot analysis was performed to study p38 MAPK activation.Results:Arecoline induced the generation of reactive oxygen species and cell cycle arrest at the G1/G0 phase in HaCaT cells without affecting the expression of p21/Cip1. Arecoline-induced epithelial cell death at higher concentrations was caused by oxidative trauma without eliciting apoptosis. Sublethal concentrations of arecoline upregulated the expression of the following stress-responsive genes: heme oxygenase-1; ferritin light chain; glucose-6-phosphate dehydrogenase; glutamate-cysteine ligase catalytic subunit; and glutathione reductase.Additionally, there was a dose-dependent induction of interleukin-1alfa mRNA by arecoline via oxidative stress and p38 MAPK activation. Conclusion:our data highlight the role of oxidative stress in arecoline-mediated cell death, gene regulation and inflammatory processes in human keratinocytes.