63 resultados para Face array


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A circular array of Piezoelectric Wafer Active Sensor (PWAS) has been employed to detect surface damages like corrosion using lamb waves. The array consists of a number of small PWASs of 10 mm diameter and 1 mm thickness. The advantage of a circular array is its compact arrangement and large area of coverage for monitoring with small area of physical access. Growth of corrosion is monitored in a laboratory-scale set-up using the PWAS array and the nature of reflected and transmitted Lamb wave patterns due to corrosion is investigated. The wavelet time-frequency maps of the sensor signals are employed and a damage index is plotted against the damage parameters and varying frequency of the actuation signal (a windowed sine signal). The variation of wavelet coefficient for different growth of corrosion is studied. Wavelet coefficient as function of time gives an insight into the effect of corrosion in time-frequency scale. We present here a method to eliminate the time scale effect which helps in identifying easily the signature of damage in the measured signals. The proposed method becomes useful in determining the approximate location of the corrosion with respect to the location of three neighboring sensors in the circular array. A cumulative damage index is computed for varying damage sizes and the results appear promising.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a concept and report experimental results based on a circular array of Piezoelectric Wafer Active Sensors (PWASs) for rapid localization and parametric identification of corrosion type damage in metallic plates. Implementation of this circular array of PWASs combines the use of ultrasonic Lamb wave propagation technique and an algorithm based on symmetry breaking in the signal pattern to locate and monitor the growth of a corrosion pit on a metallic plate. Wavelet time-frequency maps of the sensor signals are employed to obtain an insight regarding the effect of corrosion growth on the Lamb wave transmission in time-frequency scale. We present here a method to eliminate the time scale, which helps in identifying easily the signature of damage in the measured signals. The proposed method becomes useful in determining the approximate location of the damage with respect to the location of three neighboring sensors in the circular array. A cumulative damage index is computed from the wavelet coefficients for varying damage sizes and the results appear promising. Damage index is plotted against the damage parameters for frequency sweep of the excitation signal (a windowed sine signal). Results of corrosion damage are compared with circular holes of various sizes to demonstrate the applicability of present method to different types of damage. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

3D Face Recognition is an active area of research for past several years. For a 3D face recognition system one would like to have an accurate as well as low cost setup for constructing 3D face model. In this paper, we use Profilometry approach to obtain a 3D face model.This method gives a low cost solution to the problem of acquiring 3D data and the 3D face models generated by this method are sufficiently accurate. We also develop an algorithm that can use the 3D face model generated by the above method for the recognition purpose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diffuse optical tomography (DOT) using near-infrared (NIR) light is a promising tool for noninvasive imaging of deep tissue. This technique is capable of quantitative reconstructions of absorption coefficient inhomogeneities of tissue. The motivation for reconstructing the optical property variation is that it, and, in particular, the absorption coefficient variation, can be used to diagnose different metabolic and disease states of tissue. In DOT, like any other medical imaging modality, the aim is to produce a reconstruction with good spatial resolution and accuracy from noisy measurements. We study the performance of a phase array system for detection of optical inhomogeneities in tissue. The light transport through a tissue is diffusive in nature and can be modeled using diffusion equation if the optical parameters of the inhomogeneity are close to the optical properties of the background. The amplitude cancellation method that uses dual out-of-phase sources (phase array) can detect and locate small objects in turbid medium. The inverse problem is solved using model based iterative image reconstruction. Diffusion equation is solved using finite element method for providing the forward model for photon transport. The solution of the forward problem is used for computing the Jacobian and the simultaneous equation is solved using conjugate gradient search. The simulation studies have been carried out and the results show that a phase array system can resolve inhomogeneities with sizes of 5 mm when the absorption coefficient of the inhomogeneity is twice that of the background tissue. To validate this result, a prototype model for performing a dual-source system has been developed. Experiments are carried out by inserting an inhomogeneity of high optical absorption coefficient in an otherwise homogeneous phantom while keeping the scattering coefficient same. The high frequency (100 MHz) modulated dual out-of-phase laser source light is propagated through the phantom. The interference of these sources creates an amplitude null and a phase shift of 180° along a plane between the two sources with a homogeneous object. A solid resin phantom with inhomogeneities simulating the tumor is used in our experiment. The amplitude and phase changes are found to be disturbed by the presence of the inhomogeneity in the object. The experimental data (amplitude and the phase measured at the detector) are used for reconstruction. The results show that the method is able to detect multiple inhomogeneities with sizes of 4 mm. The localization error for a 5 mm inhomogeneity is found to be approximately 1 mm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interrogation techniques for fiber Bragg grating sensor arrays need particular attention in the case of structural health monitoring applications involving dynamic strain measurement. Typically the performance of the sensing system is dependent on both the sensor type and the interrogation method employed. A novel interrogation system is proposed here that consists of different interrogation units for each sensor in the array, each unit comprising of a circulator, chirped grating and a Mach-Zehnder interferometer. We present an analysis that consists of tracking the spectral changes as the light passes through various elements in the interrogation system. This is expected to help in the optimization of sensor and interrogation elements leading to improved performance of the health monitoring system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lamb wave type guided wave propagation in foam core sandwich structures and detectability of damages using spectral analysis method are reported in this paper. An experimental study supported by theoretical evaluation of the guided wave characteristics is presented here that shows the applicability of Lamb wave type guided ultrasonic wave for detection of damage in foam core sandwich structures. Sandwich beam specimens were fabricated with 10 mm thick foam core and 0.3 mm thick aluminum face sheets. Thin piezoelectric patch actuators and sensors are used to excite and sense guided wave. Group velocity dispersion curves and frequency response of sensed signal are obtained experimentally. The nature of damping present in the sandwich panel is monitored by measuring the sensor signal amplitude at various different distances measured from the center of the linear phased array. Delaminations of increasing width are created and detected experimentally by pitch-catch interrogation with guided waves and wavelet transform of the sensed signal. Signal amplitudes are analyzed for various different sizes of damages to differentiate the damage size/severity. A sandwich panel is also fabricated with a planer dimension of 600 mm x 400 mm. Release film delamination is introduced during fabrication. Non-contact Laser Doppler Vibrometer (LDV) is used to scan the panel while exciting with a surface bonded piezoelectric actuator. Presence of damage is confirmed by the reflected wave fringe pattern obtained from the LDV scan. With this approach it is possible to locate and monitor the damages by tracking the wave packets scattered from the damages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the Lamb wave type guided wave propagation in honeycomb core sandwich structures. An experimental study supported by theoretical evaluation of the guided wave characteristics is presented that proves the potential of Lamb wave type guided wave for detection of damage in sandwich structures. A sandwich panel is fabricated with planar dimension of 600 mm x 600 mm, having a core thickness of 7 mm, cell size of 5 mm and 0.1 mm thick aluminum face sheets. Thin piezoelectric patch actuators and sensors are used to excite and sense a frequency band limited guided wave with a central frequency. A linear phased array of piezoelectric patch actuators is used to achieve higher signal strength and directivity. Group velocity dispersion curves and corresponding frequency response of sensed signal are obtained experimentally. Linearity between the excitation signal amplitude and the corresponding sensed signal amplitude is found for certain range of parameters. The nature of damping present in the sandwich panel is monitored by measuring the sensor signal amplitude at various different distances measured from the center of the linear phased array. Indentation and low velocity impact induced damages of increasing diameter covering several honeycomb cells are created. Crushing of honeycomb core with rupture of face sheet is observed while introducing the damage. The damages are then detected experimentally by pitch-catch interrogation with guided waves and wavelet transform of the sensed signal. Signal amplitudes are analyzed for various different sizes of damages to differentiate the damage size/severity. Monotonic changes in the sensor signal amplitude due to increase in the damage size has been established successfully. With this approach it is possible to locate and monitor the damages with the help of phased array and by tracking the wave packets scattered from the damages. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In space application the precision level measurement of cryogenic liquids in the storage tanks is done using triple redundant capacitance level sensor, for control and safety point of view. The linearity of each sensor element depends upon the cylindricity and concentricity of the internal and external electrodes. The complexity of calibrating all sensors together has been addressed by two step calibration methodology which has been developed and used for the calibration of six capacitance sensors. All calibrations are done using Liquid Nitrogen (LN2) as a cryogenic fluid. In the first step of calibration, one of the elements of Liquid Hydrogen (LH2) level sensor is calibrated using 700mm eleven point discrete diode array. Four wire method has been used for the diode array. Thus a linearity curve for a single element of LH2 is obtained. In second step of calibration, using the equation thus obtained for the above sensor, it is considered as a reference for calibrating remaining elements of the same LH2 sensor and other level sensor (either Liquid Oxygen (LOX) or LH2). The elimination of stray capacitance for the capacitance level probes has been attempted. The automatic data logging of capacitance values through GPIB is done using LabVIEW 8.5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A CMOS gas sensor array platform with digital read-out containing 27 sensor pixels and a reference pixel is presented. A signal conditioning circuit at each pixel includes digitally programmable gain stages for sensor signal amplification followed by a second order continuous time delta sigma modulator for digitization. Each sensor pixel can be functionalized with a distinct sensing material that facilitates transduction based on impedance change. Impedance spectrum (up to 10 KHz) of the sensor is obtained off-chip by computing the fast Fourier transform of sensor and reference pixel outputs. The reference pixel also compensates for the phase shift introduced by the signal processing circuits. The chip also contains a temperature sensor with digital readout for ambient temperature measurement. A sensor pixel is functionalized with polycarbazole conducting polymer for sensing volatile organic gases and measurement results are presented. The chip is fabricated in a 0.35 CMOS technology and requires a single step post processing for functionalization. It consumes 57 mW from a 3.3 V supply.