36 resultados para FUNGI
Resumo:
Bioactive compounds comprising secondary metabolites produced by endophytic fungi have wide applications in pharmacology and agriculture. Isolation, characterisation and evaluation of biological activities of secondary metabolites were carried out from Cochliobolus kusanoi an endophytic fungus of Nerium oleander L. The fungus was identified based on 18S rDNA sequence analysis. There are no reports available on the compounds of C. kusanoi hence, antimicrobial metabolite produced by this fungus was extracted and purified by fractionation using hexane, diethyl ether, dichloromethane, ethyl acetate and methanol. Out of all the solvent fractions, the methanol fraction exhibited better antimicrobial activity which was further purified and characterised as oosporein. Oosporein from C. kusanoi exhibited broad spectrum in vitro antimicrobial, antioxidant and cytotoxic activities. The characterisation and antioxidant activity of oosporein from C. kusanoi are reported for the first time.
Resumo:
Macrophages regulate cell fate decisions during microbial challenges by carefully titrating signaling events activated by innate receptors such as dectin-1 or Toll-like receptors (TLRs). Here, we demonstrate that dectin-1 activation robustly dampens TLR-induced proinflammatory signature in macrophages. Dectin-1 induced the stabilization of beta-catenin via spleen tyrosine kinase (Syk)-reactive oxygen species (ROS) signals, contributing to the expression of WNT5A. Subsequently, WNT5A-responsive protein inhibitors of activated STAT (PIAS-1) and suppressor of cytokine signaling 1 (SOCS-1) mediate the downregulation of IRAK-1, IRAK-4, and MyD88, resulting in decreased expression of interleukin 12 (IL-12), IL-1 beta, and tumor necrosis factor alpha (TNF-alpha). In vivo activation of dectin-1 with pathogenic fungi or ligand resulted in an increased bacterial burden of Mycobacteria, Klebsiella, Staphylococcus, or Escherichia, with a concomitant decrease in TLR-triggered proinflammatory cytokines. All together, our study establishes a new role for dectin-1-responsive inhibitory mechanisms employed by virulent fungi to limit the proinflammatory environment of the host.
Resumo:
Since the dawn of civilization, natural resources have remained the mainstay of various remedial approaches of humans vis-a-vis a large number of illnesses. Saraca asoca (Roxb.) de Wilde (Saraca indica L.) belonging to the family Caesalpiniaceae has been regarded as a universal panacea in old Indian Ayurvedic texts and has especially been used to manage gynaecological complications and infections besides treating haemmorhagic dysentery, uterine pain, bacterial infections, skin problems, tumours, worm infestations, cardiac and circulatory problems. Almost all parts of the plant are considered pharmacologically valuable. Extensive folkloric practices and ethnobotanical applications of this plant have even lead to the availability of several commercial S. asoca formulations recommended for different indications though adulteration of these remains a pressing concern. Though a wealth of knowledge on this plant is available in both the classical and modern literature, extensive research on its phytomedicinal worth using state-of-the-art tools and methodologies is lacking. Recent reports on bioprospecting of S. asoca endophytic fungi for industrial bioproducts and useful pharmacologically relevant metabolites provide a silver lining to uncover single molecular bio-effectors from its endophytes. Here, we describe socio-ethnobotanical usage, present the current pharmacological status and discuss potential bottlenecks in harnessing the proclaimed phytomedicinal worth of this prescribed Ayurvedic medicinal plant. Finally, we also look into the possible future of the drug discovery and pharmaceutical R&D efforts directed at exploring its pharma legacy.
Resumo:
Immune responses during fungal infections are predominately mediated by 5/15-lipoxygenases (LO)-or cyclooxygenase (COX)-2-catalysed bioactive eicosanoid metabolites like leukotrienes, lipoxins and prostaglandins. Although few host mediators of fungi-triggered eicosanoid production have been established, the molecular mechanism of expression and regulation of 5-LO, 15-LO and COX-2 are not well-defined. Here, we demonstrate that, macrophages infected with representative fungi Candida albicans, Aspergillus flavus or Aspergillus fumigatus or those treated with Curdlan, a selective agonist of pattern recognition receptor for fungi Dectin-1, displays increased expression of 5-LO, 15-LO and COX-2. Interestingly, Dectin-1-responsive Syk pathway activates mTOR-sonic hedgehog (SHH) signaling cascade to stimulate the expression of these lipid metabolizing enzymes. Loss-of-function analysis of the identified intermediaries indicates that while Syk-mTOR-SHH pathway-induced 5-LO and 15-LO suppressed the Dectin-l-responsive pro-inflammatory signature cytokines like TNE-alpha, IL-1 beta and IL-12, Syk-mTOR-SHH-induced COX-2 positively regulated these cytokines. Dectin-1-stimulated IL-6, however, is dependent on 5-LO, 15-LO and COX-2 activity. Together, the current study establishes Dectin-1-arbitrated host mediators that direct the differential regulation of immune responses during fungal infections and thus are potential candidates of therapeutic intervention. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Endophytic fungi isolated from Catharanthus roseus were screened for the production of vincristine and vinblastine. Twenty-two endophytic fungi isolated from various tissues of C. roseus were characterized taxonomically by sequence analysis of the internal transcribed spacer (ITS) region of rDNA and grouped into 10 genera: Alternaria, Aspergillus, Chaetomium, Colletotrichum, Dothideomycetes, Eutypella, Eutypa, Flavodon, Fusarium and Talaromyces. The antiproliferative activity of these fungi was assayed in HeLa cells using the MTT assay. The fungal isolates Eutypella sp-CrP14, obtained from stem tissues, and Talaromyces radicus-CrP20, obtained from leaf tissues, showed the strongest antiproliferative activity, with IC50 values of 13.5 mu g/ml and 20 mu g/ml, respectively. All 22 endophytic fungi were screened for the presence of the gene encoding tryptophan decarboxylase (TDC), the key enzyme in the terpenoid indole alkaloid biosynthetic pathway, though this gene could only be amplified from T. radicus-CrP20 (NCBI GenBank accession number KC920846). The production of vincristine and vinblastine by T. radicus-CrP20 was confirmed and optimized in nine different liquid media. Good yields of vincristine (670 mu g/l) in modified M2 medium and of vinblastine (70 mu g/l) in potato dextrose broth medium were obtained. The cytotoxic activity of partially purified fungal vincristine was evaluated in different human cancer cell lines, with HeLa cells showing maximum susceptibility. The apoptosis-inducing activity of vincristine derived from this fungus was established through cell cycle analysis, loss of mitochondrial membrane potential and DNA fragmentation patterns.
Resumo:
Role of indigenous microbes in the formation and conversion of bauxite minerals is illustrated. Many types of microorganisms such as fungi, heterotrophic and autotrophic bacteria and yeasts inhabit bauxite ore deposits bringing about biogenesis and biomineraliztion. Organisms capable of iron oxidation and reduction and solubilising calcium carbonate and silica can be isolated from bauxite deposits and are used to bring about selective mineral beneficiation to remove iron, calcium and silica. Use of Paenibacillus polymyxa in the efficient removal of calcium from low grade bauxites is demonstrated through bioreactor technology. Similarly, for iron removal from bauxite, iron-reducing bacteria can be used. Silicate bacteria aid in selective silica solubilisation to control alumina: silica ratios. Microorganisms can also be used to bring about environmental control with respect to red mud disposal through bioremediation technology.