74 resultados para FOCAL ADHESION KINASE
Resumo:
The effect of docosahexaenoic acid (DHA) on the diacylglycerol kinase (DG kinase) activity in rat brain membranes was investigated. DHA at 500 mu M concentration, stimulated the enzyme activity by about 2 fold. This effect was concentration-and time-dependent and was observed after very short periods of incubation (one min). DHA stimulation of DG kinase was observed only with rat brain membranes, and not with rat brain cytosol or rat liver membranes. Treating the rat brain membranes with phospholipase A(2) which released free fatty acids including DHA, significantly stimulated the DG kinase activity. It is concluded that DHA through its stimulatory effect on DG kinase may regulate the signalling events in growth-related situations in the brain such as synaptogenesis.
Resumo:
The role of growth conditions and adhesion of Thiobacillus ferrooxidans on the leaching of chalcopyrite was investigated. Thiobacillus ferrooxidans grown on sulfur, thiosulfate and ferrous ion substrates was used in this comparative study. Growth on sulfur, a solid substrate, requires bacterial adhesion unlike that required in the presence of soluble thiosulfate and ferrous ion in a mineral-salts medium. Solid substrate-grown cells showed higher rates of leaching than those grown in liquid media. An initial lag period noticed during leaching by solution-grown cells was absent when solid substrate-grown cells were used. Such a behavior is attributed to the presence of an inducible proteinaceous cell-surface appendage on the sulfur-grown cells. This appendage aids in bacterial adhesion onto the mineral surfaces. Such an appendage is absent in solution-grown cells, as substantiated by electrophoretic measurements. The importance of bacterial adhesion and the direct mechanism in leaching by Thiobacillus ferrooxidans are demonstrated.
Resumo:
The catalytic conversion ATP + AMP -> 2ADP by the enzyme adenylate kinase (ADK) involves the binding of one ATP. molecule to the LID domain and one AMP molecule to the NMP domain. The latter is followed by a. phosphate transfer and then the release of two ADP molecules. We have computed a novel two-dimensional configurational free energy surface (2DCFES), with one reaction coordinate each for the LID and the NMP domain motions, while considering explicit water interactions. Our computed 2DCFES clearly reveals the existence of a stable half-open half-closed (HOHC) intermediate stale of the enzyme. Cycling of the enzyme through the HOHC state reduces the conformational free energy barrier for. the reaction by about 20 kJ/mol. We find that the stability of the HOHC state (missed in all earlier studies with implicit solvent model) is largely because of the increase of specific interactions of the polar amino acid side chains with water, particularly with the arginine and the histidine residues. Free energy surface of the LID domain is rather rugged, which can conveniently slow down LID's conformational motion, thus facilitating a new substrate capture after the product release in the catalytic cycle.
Resumo:
An apparatus in the direct shear mode has been developed to conduct soil-soil and soil-solid material interface tests in the undrained condition. Evaluation of the apparatus showed that all the requirements for simulating the undrained condition of shear are satisfied. The interface test results show that the adhesion factor a increases with the surface roughness of the solid material. In the case of the normally consolidated state, alpha is practically independent of the undrained shear strength of the clay for a given surface. For the overconsolidated state, alpha depends on the undrained shear strength and the overconsolidation ratio for smooth surfaces but for rough surfaces; alpha is independent of both undrained shear strength and overconsolidation ratio.
Resumo:
Being vastly different from the human counterpart, we suggest that the last enzyme of the Mycobacterium tuberculosis Coenzyme A biosynthetic pathway, dephosphocoenzyme A kinase (CoaE) could be a good anti-tubercular target. Here we describe detailed investigations into the regulatory features of the enzyme, affected via two mechanisms. Enzymatic activity is regulated by CTP which strongly binds the enzyme at a site overlapping that of the leading substrate, dephosphocoenzyme A (DCoA), thereby obscuring the binding site and limiting catalysis. The organism has evolved a second layer of regulation by employing a dynamic equilibrium between the trimeric and monomeric forms of CoaE as a means of regulating the effective concentration of active enzyme. We show that the monomer is the active form of the enzyme and the interplay between the regulator, CTP and the substrate, DCoA, affects enzymatic activity. Detailed kinetic data have been corroborated by size exclusion chromatography, dynamic light scattering, glutaraldehyde crosslinking, limited proteolysis and fluorescence investigations on the enzyme all of which corroborate the effects of the ligands on the enzyme oligomeric status and activity. Cysteine mutagenesis and the effects of reducing agents on mycobacterial CoaE oligomerization further validate that the latter is not cysteine-mediated or reduction-sensitive. These studies thus shed light on the novel regulatory features employed to regulate metabolite flow through the last step of a critical biosynthetic pathway by keeping the latter catalytically dormant till the need arises, the transition to the active form affected by a delicate crosstalk between an essential cellular metabolite (CTP) and the precursor to the pathway end-product (DCoA).
Resumo:
The present study was undertaken to assess the role of reactive oxygen species (ROS) in rat aortic ring vasoreactivity and integrity by using various peroxovanadate (pV) compounds. All the pV compounds (1 nM-300 mu M) used in the present study exerted concentration-dependent contractions on endothelium intact rat aortic rings. All compounds with an exception of DPV-asparagine (DPV-asn) significantly altered vascular integrity as shown by diminished KCl responses. Phenylephrine (PE)-mediated contractions (3 nM-300 mu M) were unaltered in the presence of these compounds. Acetylcholine (Ach)-mediated relaxation in PE (1 mu M) pre-contracted rings was significantly reduced in presence of diperoxovanadate (DPV), poly (sodium styrene sulfonate-co-maleate)-pV (PSS-CoM-pV) and poly (sodium styrene 4-sulfonate)-pV (PSS-pV). However, no significant change in Ach-mediated responses was observed in the presence of poly (acrylate)-pV (PM-pV) and DPV-asn. DPV-asn was thus chosen to further elucidate mechanism involved in peroxide mediated modulation of vasoreactivity. DPV-asn (30 nM-300 mu M) exerted significantly more stable contractions, that was found to be catalase (100 U/ml) resistant in comparison with H(2)O(2) (30 nM-300 mu M) in endothelium intact aortic rings. These contractile responses were found to be dependent on extracellular Ca(2+) and were significantly inhibited in presence of ROS scavenger N-acetylcysteine (100 mu M). Intracellular calcium chelation by BAPTA-AM (10 mu M) had no significant effect on DPV-asn (30 nM-300 mu M) mediated contraction. Pretreatment of aortic rings by rho-kinase inhibitor Y-27632 (10 mu M) significantly inhibited DPV-asn-mediated vasoconstriction indicating role of voltage-dependent Ca(2+) influx and downstream activation of rho-kinase. The small initial relaxant effect obtained on addition of DPV-asn (30 nM-1 mu M) in PE (1 mu M) pre-contracted endothelium intact rings, was prevented in the presence of guanylate cyclase inhibitor, methylene blue (10 mu M) and/or nitric oxide synthase (NOS) inhibitor, L-NAME (100 mu M) suggesting involvement of nitric oxide and cGMP. DPV-asn, like H(2)O(2), exerted a response of vasoconstriction in normal arteries and vasodilation at low concentrations (30 nM-1 mu M) in PE-pre contracted rings with overlapping mechanisms. These findings suggest usefulness of DPV-asn having low toxicity, in exploring the peroxide-mediated effects on various vascular beds. The present study also convincingly demonstrates role of H(2)O(2) in the modulation of vasoreactivity by using stable peroxide DPV-asn and warrants future studies on peroxide mediated signaling from a newer perspective. (C) 2011 Published by Elsevier Ltd.
Resumo:
Glioblastoma is the most common and malignant form of primary astrocytoma. Upon investigation of the insulin-like growth factor (IGF) pathway, we found the IGF2BP3/IMP3 transcript and protein to be up-regulated in GBMs but not in lower grade astrocytomas (p<0.0001). IMP3 is an RNA binding protein known to bind to the 5'-untranslated region of IGF-2 mRNA, thereby activating its translation. Overexpression-and knockdown-based studies establish a role for IMP3 in promoting proliferation, anchorage-independent growth, invasion, and chemoresistance. IMP3 overexpressing B16F10 cells also showed increased tumor growth, angiogenesis, and metastasis, resulting in poor survival in a mouse model. Additionally, the infiltrating front, perivascular, and subpial regions in a majority of the GBMs stained positive for IMP3. Furthermore, two different murine glioma models were used to substantiate the above findings. In agreement with the translation activation functions of IMP3, we also found increased IGF-2 protein in the GBM tumor samples without a corresponding increase in its transcript levels. Also, in vitro IMP3 overexpression/knockdown modulated the IGF-2 protein levels without altering its transcript levels. Additionally, IGF-2 neutralization and supplementation studies established that the proproliferative effects of IMP3 were indeed mediated through IGF-2. Concordantly, PI3K and MAPK, the downstream effectors of IGF-2, are activated by IMP3 and are found to be essential for IMP3-induced cell proliferation. Thus, we have identified IMP3 as a GBM-specific proproliferative and proinvasive marker acting through IGF-2 resulting in the activation of oncogenic PI3K and MAPK pathways.
Resumo:
The surface properties of coal and solution pH play a major role in determining the adhesion of microorganisms. In this study, three Indian coal samples with different compositions have been used and the adhesion of the bacterium Bacillus polymyxa to these coals has been investigated. It was found that due to the high ash content of coal, the zeta-potential was negative over most of the pH range which is close to the values exhibited by pure quartz as well as B. polymyxa. Similarly, the surface free energy components of coal (derived from contact angle measurements) showed that the electron-donor component increased with ash content. Adhesion experiments revealed that maximum adhesion of the bacterium B. polymyxa occurred on to the coal samples around the point-of-zero-charge of the coal and the bacterium i.e. about pH 2. Further, adhesion was found to be dependent on the ash content and the surface free energy of the coals. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
Nucleoside diphosphate kinases (NDK) are characterized by high catalytic turnover rates and diverse substrate specificity. These features make this enzyme an effective activator of a pro-drug an application that has been actively pursued for a variety of therapeutic strategies. The catalytic mechanism of this enzyme is governed by a conserved histidine that coordinates a magnesium ion at the active site. Despite substantial structural and biochemical information on NDK, the mechanistic feature of the phospho-transfer that leads to auto-phosphorylation remains unclear. While the role of the histidine residue is well documented, the other active site residues, in particular the conserved serine remains poorly characterized. Studies on some homologues suggest no role for the serine residue at the active site, while others suggest a crucial role for this serine in the regulation and quaternary association of this enzyme in some species. Here we report the biochemical features of the Staphylococcus aureus NDK and the mutant enzymes. We also describe the crystal structures of the apo-NDK, as a transition state mimic with vanadate and in complex with different nucleotide substrates. These structures formed the basis for molecular dynamics simulations to understand the broad substrate specificity of this enzyme and the role of active site residues in the phospho-transfer mechanism and oligomerization. Put together, these data suggest that concerted changes in the conformation of specific residues facilitate the stabilization of nucleotide complexes thereby enabling the steps involved in the ping-pong reaction mechanism without large changes to the overall structure of this enzyme. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Dendritic cells (DCs) as sentinels of the immune system are important for eliciting both primary and secondary immune responses to a plethora of microbial pathogens. Cooperative stimulation of a complex set of pattern-recognition receptors, including TLR2 and nucleotide-binding oligomerization domain (NOD)-like receptors on DCs, acts as a rate-limiting factor in determining the initiation and mounting of the robust immune response. It underscores the need for ``decoding'' these multiple receptor interactions. In this study, we demonstrate that TLR2 and NOD receptors cooperatively regulate functional maturation of human DCs. Intriguingly, synergistic stimulation of TLR2 and NOD receptors renders enhanced refractoriness to TGF-beta- or CTLA-4-mediated impairment of human DC maturation. Signaling perturbation data suggest that NOTCH1-PI3K signaling dynamics assume critical importance in TLR2- and NOD receptor-mediated surmounting of CTLA-4- and TGF-beta -suppressed maturation of human DCs. Interestingly, the NOTCH1-PI3K signaling axis holds the capacity to regulate DC functions by virtue of PKC delta-MAPK-dependent activation of NF-kappa B. This study provides mechanistic and functional insights into TLR2-and NOD receptor-mediated regulation of DC functions and unravels NOTCH1-PI3K as a signaling cohort for TLR2 and NOD receptors. These findings serve in building a conceptual foundation for the design of improved strategies for adjuvants and immunotherapies against infectious diseases.
Resumo:
Previous studies of complexes of Mycobacterium tuberculosis PanK (MtPanK) with nucleotide diphosphates and non-hydrolysable analogues of nucleoside triphosphates in the presence or the absence of pantothenate established that the enzyme has dual specificity for ATP and GTP, revealed the unusual movement of ligands during enzyme action and provided information on the effect of pantothenate on the location and conformation of the nucleotides at the beginning and the end of enzyme action. The X-ray analyses of the binary complexes of MtPanK with pantothenate, pantothenol and N-nonylpantothenamide reported here demonstrate that in the absence of nucleotide these ligands occupy, with a somewhat open conformation, a location similar to that occupied by phosphopantothenate in the `end' complexes, which differs distinctly from the location of pantothenate in the closed conformation in the ternary `initiation' complexes. The conformation and the location of the nucleotide were also different in the initiation and end complexes. An invariant arginine appears to play a critical role in the movement of ligands that takes place during enzyme action. The work presented here completes the description of the locations and conformations of nucleoside diphosphates and triphosphates and pantothenate in different binary and ternary complexes, and suggests a structural rationale for the movement of ligands during enzyme action. The present investigation also suggests that N-alkylpantothenamides could be phosphorylated by the enzyme in the same manner as pantothenate.
Resumo:
Acetate kinase (AckA) catalyzes the reversible transfer of a phosphate group from acetyl phosphate to ADP, generating acetate and ATP, and plays a central role in carbon metabolism. In the present work, the gene corresponding to AckA from Salmonella typhimurium (StAckA) was cloned in the IPTG-inducible pRSET C vector, resulting in the attachment of a hexahistidine tag to the N-terminus of the expressed enzyme. The recombinant protein was overexpressed, purified and crystallized in two different crystal forms using the microbatch-under-oil method. Form I crystals diffracted to 2.70 angstrom resolution when examined using X-rays from a rotating-anode X-ray generator and belonged to the monoclinic space group C2, with unit-cell parameters a = 283.16, b = 62.17, c = 91.69 angstrom, beta = 93.57 degrees. Form II crystals, which diffracted to a higher resolution of 2.35 angstrom on the rotating-anode X-ray generator and to 1.90 angstrom on beamline BM14 of the ESRF, Grenoble, also belonged to space group C2 but with smaller unit-cell parameters (a = 151.01, b = 78.50, c = 97.48 angstrom, beta = 116.37 degrees). Calculation of Matthews coefficients for the two crystal forms suggested the presence of four and two protomers of StAckA in the asymmetric units of forms I and II, respectively. Initial phases for the form I diffraction data were obtained by molecular replacement using the coordinates of Thermotoga maritima AckA (TmAckA) as the search model. The form II structure was phased using a monomer of form I as the phasing model. Inspection of the initial electron-density maps suggests dramatic conformational differences between residues 230 and 300 of the two crystal forms and warrants further investigation.
Resumo:
Binding of several bisindolylmaleimide (BIS) like (BIS-3, BIS-8 and UCN1) and other ligands (H89, SB203580 and Y27632) with the glycogen synthase kinase-3 (GSK-3 beta) has been studied using combined docking, molecular dynamics and Poisson-Boltzmann surface area analysis approaches. The study generated novel binding modes of these ligands that can rationalize why some ligands inhibit GSK-3 beta while others do not. The relative binding free energies associated with these binding modes are in agreement with the corresponding measured specificities. This study further provides useful insight regarding possible existence of multiple conformations of some ligands like H89 and BIS-8. It is also found that binding modes of BIS-3, BIS-8 and UCN1 with GSK-3 beta and PDK1 kinases are similar. These new insights are expected to be useful for future rational design of novel, more potent GSK-3 beta-specific inhibitors as promising therapeutics.
Resumo:
Adhesion of Thiobacillus ferrooxidans to pyrite and chalcopyrite in relation to its importance in bioleaching and bioflotation has been studied. Electrokinetic studies as well as FT-IR spectra suggest that the surface chemistry of Thiobacillus ferrooxidans depends on bacterial growth conditions. Sulfur-,Pyrite- and chalcopyrite-grown Thiobacillus ferrooxidans were found to be relatively more hydrophobic. The altered surface chemistry of Thiobacillus ferrooxidans was due to secretion of newer and specific proteinaceous compounds. The adsorption density corresponds to a monolayer coverage in a horizontal orientation of the cells. The xanthate flotation of pyrite in presence of Thiobacillus ferrooxidans is strongly depressed where as the cells have insignificant effect on chalcopyrite flotation. This study demonstrate that: (a)Thiobacillus ferrooxidans cells can be used for selective flotation of chalcopyrite from pyrite and importantly at natural pH values. (b)Sulfur-grown cells exhibits higher leaching kinetics than ferrous ion-grown cells.