450 resultados para Energy.
Resumo:
Electronic excitation in H2O, H2S, H2Se and H2Te molecules has been studied by the EELS technique. Spectra of H2S and H2Se are remarkably similar with the 1b1-nd transition most intense. The intensity of the first transition 1b1-nsa1 decreases through H2O to H2Se and this transition is absent in H2Te. Transitions observed by EELS have been compared with optical absorption studies. A correlation diagram of the occupied and the excited states has been provided for these four molecules by making use of UVPES and EELS.
Resumo:
The dynamics of reactions with low internal barriers are studied both analytically and numerically for two different models. Exact expressions for the average rate,kI, are obtained by solving the associated first passage time problems. Both the average rate constant, kI, and the numerically calculated long-time rate constant, kL, show a fractional power law dependence on the barrier height for very low barriers. The crossover of the reaction dynamics from low to high barrier is investigated.
Resumo:
An integrated approach to energy planning, when applied to large hydroelectric projects, requires that the energy-opportunity cost of the land submerged under the reservoir be incorporated into the planning methodology. Biomass energy lost from the submerged land has to be compared to the electrical energy generated, for which we develop four alternative formulations of the net-energy function. The design problem is posed as an LP problem and is solved for two sites in India. Our results show that the proposed designs may not be viable in net-energy terms, whereas a marginal reduction in the generation capacity could lead to an optimal design that gives substantial savings in the submerged area. Allowing seasonal variations in the hydroelectric generation capacity also reduces the reservoir size. A mixed hydro-wood generation system is then examined and is found to be viable.
Resumo:
Complexes of I2 with diethyl ether and triethylamine and of Br, with diethyl ether have been investigated in the vapor phase for the first time by employing electron energy loss spectroscopy. Besides the CT bands, blue-shifted vacuum-UV bands of the halogens have been assigned; the amine-I, system appears to exhibit two CT bands,associated with two different excited states of the complex.
Resumo:
An indigenous electron energy loss spectrometer has been designed and fabricated for the study of free molecules. The spectrometer enables the recording of low-resolution electronic spectra of molecules inthe vapour phase with ready access to the vacuum ultraviolet region. Electron energy loss spectra of aliphatic alcohols and carbonyl compounds as wellas of benzene derivatives have been recorded with the indigenous spectrometer and the electronic transitions in these molecules discussed.
Resumo:
In this paper, for the first time, the effects of energy quantization on single electron transistor (SET) inverter performance are analyzed through analytical modeling and Monte Carlo simulations. It is shown that energy quantization mainly changes the Coulomb blockade region and drain current of SET devices and thus affects the noise margin, power dissipation, and the propagation delay of SET inverter. A new analytical model for the noise margin of SET inverter is proposed which includes the energy quantization effects. Using the noise margin as a metric, the robustness of SET inverter is studied against the effects of energy quantization. A compact expression is developed for a novel parameter quantization threshold which is introduced for the first time in this paper. Quantization threshold explicitly defines the maximum energy quantization that an SET inverter logic circuit can withstand before its noise margin falls below a specified tolerance level. It is found that SET inverter designed with CT:CG=1/3 (where CT and CG are tunnel junction and gate capacitances, respectively) offers maximum robustness against energy quantization.
Resumo:
The current-biased single electron transistor (SET) (CBS) is an integral part of almost all hybrid CMOS SET circuits. In this paper, for the first time, the effects of energy quantization on the performance of CBS-based circuits are studied through analytical modeling and Monte Carlo simulations. It is demonstrated that energy quantization has no impact on the gain of the CBS characteristics, although it changes the output voltage levels and oscillation periodicity. The effects of energy quantization are further studied for two circuits: negative differential resistance (NDR) and neuron cell, which use the CBS. A new model for the conductance of NDR characteristics is also formulated that includes the energy quantization term.
Resumo:
We study sensor networks with energy harvesting nodes. The generated energy at a node can be stored in a buffer. A sensor node periodically senses a random field and generates a packet. These packets are stored in a queue and transmitted using the energy available at that time at the node. For such networks we develop efficient energy management policies. First, for a single node, we obtain policies that are throughput optimal, i.e., the data queue stays stable for the largest possible data rate. Next we obtain energy management policies which minimize the mean delay in the queue. We also compare performance of several easily implementable suboptimal policies. A greedy policy is identified which, in low SNR regime, is throughput optimal and also minimizes mean delay. Next using the results for a single node, we develop efficient MAC policies.
Resumo:
This paper attempts to evaluate the energy inputs needed to produce rural buildings. Based on a survey, a comparison is carried out of traditional and innovative technologies with reference to their energy consumption. Some basic data regarding energies in transportation are also presented. The implications of this analysis for development objectives is discussed.
Resumo:
Analytical expressions for the corrections to duality are obtained for nonsingular potentials, and are found to be small numerically. An alternative consistent way of energy smoothing, developed by Strutinsky, is elucidated. This may be of use even when potential models are not valid.
Resumo:
Presented in this letter is a critical discussion of a recent paper on experimental investigation of the enthalpy, entropy and free energy of formation of gallium nitride (GaN) published in this journal [T.J. Peshek, J.C. Angus, K. Kash, J. Cryst. Growth 311 (2008) 185-189]. It is shown that the experimental technique employed detects neither the equilibrium partial pressure of N-2 corresponding to the equilibrium between Ga and GaN at fixed temperatures nor the equilibrium temperature at constant pressure of N-2. The results of Peshek et al. are discussed in the light of other information on the Gibbs energy of formation available in the literature. Entropy of GaN is derived from heat-capacity measurements. Based on a critical analysis of all thermodynamic information now available, a set of optimized parameters is identified and a table of thermodynamic data for GaN developed from 298.15 to 1400 K.
Resumo:
This paper is a condensed version of the final report of a detailed field study of rural energy consumption patterns in six villages located west of Bangalore in the dry belt of Karnataka State in India. The study was carried out in two phases; first, a pilot study of four villages and second, the detailed study of six villages, the populations of which varied from around 350 to about 950. The pilot survey ended in late 1976, and most of the data was collected for the main project in 1977. Processing of the collected data was completed in 1980. The aim was to carry out a census survey, rather than a sample study. Hence, considerable effort was expended in production of both a suitable questionnaire, ensuring that all respondents were contacted, and devising methods which would accurately reflect the actual energy use in various energy-utilising activities. In the end, 560 households out of 578 (97%) were surveyed. The following ranking was found for the various energy sources in order of average percentage contribution to the annual total energy requirement: firewood, 81A·6%; human energy, 7A·7%; animal energy, 2A·7%; kerosene, 2A·1%; electricity, 0A·6% and all other sources (rice husks, agro-wastes, coal and diesel fuel), 5A·3%. In other words commercial fuels made only a small contribution to the overall energy use. It should be noted that dung cakes are not burned in this region. The average energy use pattern, sector by sector, again on a percentage basis, was as follows: domestic, 88A·3%; industry, 4A·7%; agriculture, 4A·3%; lighting, 2A·2% and transport, 0A·5%. The total annual per capita energy consumption was 12A·6 A± 1A·2 GJ, giving an average annual household consumption of around 78A·6 GJ.
Resumo:
Porphyrins appended with crown ether moieties function as efficient uncouplesrs of oxidative phorphorylation in rat liver mitochondria. Permeation of these highly organized porphyrins decrease the respiratory coefficient index (RCI) values. Lowering of the RCI values parallels the number of K+ chelating crown ether groups attached to the porphyrins. The inhibitory effect upon the oxidative phorphorylation reaction depends on the nature of divalent metal ions, VO, Co, Cu and Zn in the porphyrin cavity and related to their relative tendency to complex intracellular K+ ions.
Resumo:
Thermal decomposition of Ca(OH)2 with and without additives has been experimentally investigated for its application as a thermochemical energy storage system. The homogeneous reaction model gives a satisfactory fit for the kinetic data on pure and Ni(OH)2---, Zn(OH)2--- and Al(OH)3---doped Ca(OH)2 and the order of reaction is 0.76 in all cases except for the Al(OH)3-doped sample for which the decomposition is zero order. These additives are shown not only to enhance the reaction rate but also to reduce the decomposition temperature significantly. Some models for solid decomposition reactions, and possible mechanisms in the decomposition of solids containing additives, are also discussed.
Resumo:
The decentralized power is characterised by generation of power nearer to the demand centers, focusing mainly on meeting local energy needs. A decentralized power system can function either in the presence of grid, where it can feed the surplus power generated to the grid, or as an independent/stand-alone isolated system exclusively meeting the local demands of remote locations. Further, decentralized power is also classified on the basis of type of energy resources used-non-renewable and renewable. These classifications along with a plethora of technological alternatives have made the whole prioritization process of decentralized power quite complicated for decision making. There is abundant literature, which has discussed various approaches that have been used to support decision making under such complex situations. We envisage that summarizing such literature and coming out with a review paper would greatly help the policy/decision makers and researchers in arriving at effective solutions. With such a felt need 102 articles were reviewed and features of several technological alternatives available for decentralized power, the studies on modeling and analysis of economic, environmental and technological asibilities of both grid-connected (GC) and stand-alone (SA) systems as decentralized power options are presented. (C) 2009 Elsevier Ltd. All rights reserved.