77 resultados para Energy Efficient
Suboptimal Midcourse Guidance of Interceptors for High-Speed Targets with Alignment Angle Constraint
Resumo:
Using the recently developed computationally efficient model predictive static programming and a closely related model predictive spread control concept, two nonlinear suboptimal midcourse guidance laws are presented in this paper for interceptors engaging against incoming high-speed ballistic missiles. The guidance laws are primarily based on nonlinear optimal control theory, and hence imbed effective trajectory optimization concepts into the guidance laws. Apart from being energy efficient by minimizing the control usage throughout the trajectory (minimum control usage leads to minimum turning, and hence leads to minimum induced drag), both of these laws enforce desired alignment constraints in both elevation and azimuth in a hard-constraint sense. This good alignment during midcourse is expected to enhance the effectiveness of the terminal guidance substantially. Both point mass as well as six-degree-of-freedom simulation results (with a realistic inner-loop autopilot based on dynamic inversion) are presented in this paper, which clearly shows the effectiveness of the proposed guidance laws. It has also been observed that, even with different perturbations of missile parameters, the performance of guidance is satisfactory. A comparison study, with the vector explicit guidance scheme proposed earlier in the literature, also shows that the newly proposed model-predictive-static-programming-based and model-predictive-spread-control-based guidance schemes lead to lesser lateral acceleration demand and lesser velocity loss during engagement.
Resumo:
To meet the growing demands of the high data rate applications, suitable asynchronous schemes such as Fiber-Optic Code Division Multiple Access (FO-CDMA) are required in the last mile. FO-CDMA scheme offers potential benefits and at the same time it faces many challenges. Wavelength/Time (W/T) 2-D codes for use in FO-CDMA, can be classified mainly into two types: 1) hybrid codes and 2) matrix codes, to reduce the 'time' like property, have been proposed. W/T single-pulse-per-row (SPR) are energy efficient codes as this family of codes have autocorrelation sidelobes of '0', which is unique to this family and the important feature of the W/T multiple-pulses-per-row (MPR) codes is that the aspect ratio can be varied by trade off between wavelength and temporal lengths. These W/T codes have improved cardinality and spectral efficiency over other W/T codes and at the same time have lowest crosscorrelation values. In this paper, we analyze the performances of the FO-CDMA networks using W/T SPR codes and W/T MPR codes, with and without forward error correction (FEC) coding and show that with FEC there is dual advantage of error correction and reduced spread sequence length.
Resumo:
In this paper, electroleaching and electrobioleaching of ocean manganese nodules are discussed along with the role of galvanic interactions in bioleaching. Polarization studies using a manganese nodule slurry electrode system indicated that the maximum dissolution of iron and manganese due to electrochemical reduction occurred at negative DC potentials of -600 and -1,400 mV(SCE). Electroleaching and electrobioleaching of ocean manganese nodules in the presence of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans at the above negative applied DC potentials resulted insignificant dissolution of copper, nickel and cobalt in 1 M H2SO4 and in sulfuric acid solution at pH 0.5 and 2.0. Mechanisms involved in electrobioleaching of ocean manganese nodules are discussed. Galvanic leaching of ocean manganese nodules in the presence of externally added pyrite and pyrolusite for enhancement of dissolution was also studied. Various electrochemical and biochemical parameters were optimized, and the electroleaching and galvanic processes thus developed are shown to yield almost complete dissolution of all metal values. This electrobioleaching process developed in the laboratory may be cost effective, energy efficient and environmentally friendly.
Resumo:
Rammed earth is an energy efficient and low carbon emission alternative for load bearing walls. This paper attempts to examine the influence of clay content and moisture content on the compressive strength of cement stabilised rammed earth (CSRE) through experimental investigations. Compressive strength of CSRE prisms was monitored both in dry and wet (saturated) conditions. Major conclusions of the study are:(a) Optimum clay content for maximum compressive strength is about 16%, (b) the strength of CSRE is sensitive to the moisture content at the time of testing, (c) Strength in saturated condition is less than half of the dry strength and (d) Water absorption (saturated water content) increases as the clay content of the soil mix increases and it is in the range of 12 to 16% for the CRSE prisms with 8% cement.
Resumo:
Perovskite oxides LaMO3 (M = Cr, Co, Ni), have been successfully prepared using microwaves of 2.45 GHz. Microwave preparation is rapid, clean and energy efficient. Preparation of LaCrO3, LaCoO3 and LaNiO3 has been achieved in 3 min, 5 min and 10 min respectively. Direct reaction between component oxides is used for the preparation of LaCrO3 and LaCoO3, whereas nitrates are used as starting materials for LaNiO3 preparation. Products have been characterized using XRD, IR spectroscopy and SEM. Their dc electrical conductivity has also been studied and their fracture behaviour has been examined. All three microwave prepared oxide powders are of submicron size. These perovskite oxides have been sintered to very high densities using microwaves. Possible mechanisms of the microwave-material interaction both during preparation and during sintering have been discussed.
Resumo:
A detailed study on the removal of oxides of nitrogen (NOx) from the exhaust of a stationary diesel engine was carried out using non-thermal plasma (dielectric barrier discharge) process. The objective of the study was to explore the effect of different voltage energizations and exhaust composition on the NOx removal process. Three types of voltage energizations, namely AC, DC and Pulse were examined. Due to the ease of generation of high voltage AC/DC electrical discharges from automobile/Vehicular battery supply for possible retrofitting in exhaust cleaning circuit, it was found relevant to investigate individual energisation cases in detail for NOx removal. AC and Pulse energisations exhibit a superior NOx removal efficiency compared to DC energisation. However,Pulse energisation is found to be more energy efficient. Experiments were further carried out with filtered/ unfiltered (raw) exhaust under pulse energisations. The results were discussed with regard to NOx removal, energy consumption and formation of by-products.
Resumo:
Dynamic Voltage and Frequency Scaling (DVFS) is a very effective tool for designing trade-offs between energy and performance. In this paper, we use a formal Petri net based program performance model that directly captures both the application and system properties, to find energy efficient DVFS settings for CMP systems, that satisfy a given performance constraint, for SPMD multithreaded programs. Experimental evaluation shows that we achieve significant energy savings, while meeting the performance constraints.
Resumo:
We consider cooperative spectrum sensing for cognitive radios. We develop an energy efficient detector with low detection delay using sequential hypothesis testing. Sequential Probability Ratio Test (SPRT) is used at both the local nodes and the fusion center. We also analyse the performance of this algorithm and compare with the simulations. Modelling uncertainties in the distribution parameters are considered. Slow fading with and without perfect channel state information at the cognitive radios is taken into account.
Resumo:
We consider cooperative spectrum sensing for cognitive radios. We develop an energy efficient detector with low detection delay using sequential hypothesis testing. Sequential Probability Ratio Test (SPRT) is used at both the local nodes and the fusion center. We also analyse the performance of this algorithm and compare with the simulations. Modelling uncertainties in the distribution parameters are considered. Slow fading with and without perfect channel state information at the cognitive radios is taken into account.
Resumo:
Amplify-and-forward (AF) relay based cooperation has been investigated in the literature given its simplicity and practicality. Two models for AF, namely, fixed gain and fixed power relaying, have been extensively studied. In fixed gain relaying, the relay gain is fixed but its transmit power varies as a function of the source-relay (SR) channel gain. In fixed power relaying, the relay's instantaneous transmit power is fixed, but its gain varies. We propose a general AF cooperation model in which an average transmit power constrained relay jointly adapts its gain and transmit power as a function of the channel gains. We derive the optimal AF gain policy that minimizes the fading- averaged symbol error probability (SEP) of MPSK and present insightful and tractable lower and upper bounds for it. We then analyze the SEP of the optimal policy. Our results show that the optimal scheme is up to 39.7% and 47.5% more energy-efficient than fixed power relaying and fixed gain relaying, respectively. Further, the weaker the direct source-destination link, the greater are the energy-efficiency gains.
Resumo:
Low power consumption per channel and data rate minimization are two key challenges which need to be addressed in future generations of neural recording systems (NRS). Power consumption can be reduced by avoiding unnecessary processing whereas data rate is greatly decreased by sending spike time-stamps along with spike features as opposed to raw digitized data. Dynamic range in NRS can vary with time due to change in electrode-neuron distance or background noise, which demands adaptability. An analog-to-digital converter (ADC) is one of the most important blocks in a NRS. This paper presents an 8-bit SAR ADC in 0.13-mu m CMOS technology along with input and reference buffer. A novel energy efficient digital-to-analog converter switching scheme is proposed, which consumes 37% less energy than the present state-of-the-art. The use of a ping-pong input sampling scheme is emphasized for multichannel input to alleviate the bandwidth requirement of the input buffer. To reduce the data rate, the A/D process is only enabled through the in-built background noise rejection logic to ensure that the noise is not processed. The ADC resolution can be adjusted from 8 to 1 bit in 1-bit step based on the input dynamic range. The ADC consumes 8.8 mu W from 1 V supply at 1 MS/s speed. It achieves effective number of bits of 7.7 bits and FoM of 42.3 fJ/conversion-step.
Resumo:
The demand for energy efficient, low weight structures has boosted the use of composite structures assembled using increased quantities of structural adhesives. Bonded structures may be subjected to severe working environments such as high temperature and moisture due to which the adhesive gets degraded over a period of time. This reduces the strength of a joint and leads to premature failure. Measurement of strains in the adhesive bondline at any point of time during service may be beneficial as an assessment can be made on the integrity of a joint and necessary preventive actions may be taken before failure. This paper presents an experimental approach of measuring peel and shear strains in the adhesive bondline of composite single-lap joints using digital image correlation. Different sets of composite adhesive joints with varied bond quality were prepared and subjected to tensile load during which digital images were taken and processed using digital image correlation software. The measured peel strain at the joint edge showed a rapid increase with the initiation of a crack till failure of the joint. The measured strains were used to compute the corresponding stresses assuming a plane strain condition and the results were compared with stresses predicted using theoretical models, namely linear and nonlinear adhesive beam models. A similar trend in stress distribution was observed. Further comparison of peel and shear strains also exhibited similar trend for both healthy and degraded joints. Maximum peel stress failure criterion was used to predict the failure load of a composite adhesive joint and a comparison was made between predicted and actual failure loads. The predicted failure loads from theoretical models were found to be higher than the actual failure load for all the joints.
Resumo:
This paper studies a pilot-assisted physical layer data fusion technique known as Distributed Co-Phasing (DCP). In this two-phase scheme, the sensors first estimate the channel to the fusion center (FC) using pilots sent by the latter; and then they simultaneously transmit their common data by pre-rotating them by the estimated channel phase, thereby achieving physical layer data fusion. First, by analyzing the symmetric mutual information of the system, it is shown that the use of higher order constellations (HOC) can improve the throughput of DCP compared to the binary signaling considered heretofore. Using an HOC in the DCP setting requires the estimation of the composite DCP channel at the FC for data decoding. To this end, two blind algorithms are proposed: 1) power method, and 2) modified K-means algorithm. The latter algorithm is shown to be computationally efficient and converges significantly faster than the conventional K-means algorithm. Analytical expressions for the probability of error are derived, and it is found that even at moderate to low SNRs, the modified K-means algorithm achieves a probability of error comparable to that achievable with a perfect channel estimate at the FC, while requiring no pilot symbols to be transmitted from the sensor nodes. Also, the problem of signal corruption due to imperfect DCP is investigated, and constellation shaping to minimize the probability of signal corruption is proposed and analyzed. The analysis is validated, and the promising performance of DCP for energy-efficient physical layer data fusion is illustrated, using Monte Carlo simulations.
Resumo:
With the pressing need to meet an ever-increasing energy demand, the combustion systems utilizing fossil fuels have been the major contributors to carbon footprint. As the combustion of conventional energy resources continue to produce significant Green House gas (GHG) emissions, there is a strong emphasis to either upgrade or find an energy-efficient eco-friendly alternative to the traditional hydrocarbon fuels. With recent developments in nanotechnology, the ability to manufacture materials with custom tailored properties at nanoscale has led to the discovery of a new class of high energy density fuels containing reactive metallic nanoparticles (NPs). Due to the high reactive interfacial area and enhanced thermal and mass transport properties of nanomaterials, the high heat of formation of these metallic fuels can now be released rapidly, thereby saving on specific fuel consumption and hence reducing GHG emissions. In order to examine the efficacy of nanofuels in energetic formulations, it is imperative to first study their combustion characteristics at the droplet scale that form the fundamental building block for any combustion system utilizing liquid fuel spray. During combustion of such multiphase, multicomponent droplets, the phenomenon of diffusional entrapment of high volatility species leads to its explosive boiling (at the superheat limit) thereby leading to an intense internal pressure build-up. This pressure upsurge causes droplet fragmentation either in form of a microexplosion or droplet puffing followed by atomization (with formation of daughter droplets) featuring disruptive burning. Both these atomization modes represent primary mechanisms for extracting the high oxidation energies of metal NP additives by exposing them to the droplet flame (with daughter droplets acting as carriers of NPs). Atomization also serves as a natural mechanism for uniform distribution and mixing of the base fuel and enhancing burning rates (due to increase in specific surface area through formation of smaller daughter droplets). However, the efficiency of atomization depends on the thermo-physical properties of the base fuel, NP concentration and type. For instance, at dense loading NP agglomeration may lead to shell formation which would sustain the pressure upsurge and hence suppress atomization thereby reducing droplet gasification rate. Contrarily, the NPs may act as nucleation sites and aid boiling and the radiation absorption by NPs (from the flame) may lead to enhanced burning rates. Thus, nanoadditives may have opposing effects on the burning rate depending on the relative dominance of processes occurring at the droplet scale. The fundamental idea in this study is to: First, review different thermo-physical processes that occur globally at the droplet and sub-droplet scale such as surface regression, shell formation due to NP agglomeration, internal boiling, atomization/NP transport to flame zone and flame acoustic interaction that occur at the droplet scale and second, understand how their interaction changes as a function of droplet size, NP type, NP concentration and the type of base fuel. This understanding is crucial for obtaining phenomenological insights on the combustion behavior of novel nanofluid fuels that show great promise for becoming the next-generation fuels. (C) 2016 Elsevier Ltd. All rights reserved.
Resumo:
Ensuring reliable energy efficient data communication in resource constrained Wireless Sensor Networks (WSNs) is of primary concern. Traditionally, two types of re-transmission have been proposed for the data-loss, namely, End-to-End loss recovery (E2E) and per hop. In these mechanisms, lost packets are re-transmitted from a source node or an intermediate node with a low success rate. The proliferation routing(1) for QoS provisioning in WSNs low End-to-End reliability, not energy efficient and works only for transmissions from sensors to sink. This paper proposes a Reliable Proliferation Routing with low Duty Cycle RPRDC] in WSNs that integrates three core concepts namely, (i) reliable path finder, (ii) a randomized dispersity, and (iii) forwarding. Simulation results demonstrates that packet successful delivery rate can be maintained upto 93% in RPRDC and outperform Proliferation Routing(1). (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).