174 resultados para Electronic Journals
Resumo:
Structural stability of small sized nonstoichiometric CdS nano clusters between zincblende and wurtzite structures has been investigated using first-principles density functional calculations. Our study shows that the relative stability of these two structures depends sensitively on whether the surface is S-terminated or Cd-terminated. The associated band gap also exhibits non-monotonic behavior as a function of cluster size. Our findings may shed light on contradictory reports of experimentally observed structures of CdS nano clusters found in the literature.
Resumo:
The complexes of thiophene 2-thiocarboxamide (TTCA) with some metal chlorides and bromides [M = Ni(II), Zn(II), Cd(II), Hg(II) and Cu(I)] are described. Elemental analyses, magnetic susceptibilities and conductance studies, electronic, IR, proton and 13C magnetic resonance spectra are reported. The results suggest exclusive coordination of TTCA through the thiocarbonyl sulfur. The influence of the thiophene ring on the donor properties of the thioamide are discussed.
Resumo:
Compton profile data are used to investigate the ground state wavefunction of graphite. The results of two new $\gamma$-ray measurements are reported and compared with the results of earlier $\gamma$-ray and electron scattering measurements. A tight-binding calculation has been carried out and the results of earlier calculations based on a molecular model and a pseudo-potential wavefunction are considered. The analysis, in terms of the reciprocal form factor, shows that none of the calculations gives an adequate description of the data in the basal plane although the pseudo-potential calculation describes the anisotropy in the plane reasonably well. In the basal plane the zero-crossing theorem appears to be violated and this problem must be resolved before more accurate models can be derived. In the c-axis direction the molecular model and the tight binding calculation give better agreement with the experimental data than does the pseudopotential calculation.
Resumo:
The potential energy curve of the He2+2 system dissociating into two He+ ions is examined in terms of the electronic force exerted on each nucleus as a function of the internuclear separation. The results are compared with the process of bond-formation in H2 from the separated atoms.
Resumo:
Electronic, magnetic, or structural inhomogeneities ranging in size from nanoscopic to mesoscopic scales seem endemic and are possibly generic to colossal magnetoresistance manganites and other transition metal oxides. They are hence of great current interest and understanding them is of fundamental importance. We show here that an extension, to include long-range Coulomb interactions, of a quantum two-fluid l-b model proposed recently for manganites [Phys. Rev. Lett. 92, 157203 (2004)] leads to an excellent description of such inhomogeneities. In the l-b model two very different kinds of electronic states, one localized and polaronic (l) and the other extended or broad band (b) coexist. For model parameters appropriate to manganites and even within a simple dynamical mean-field theory (DMFT) framework, it describes many of the unusual phenomena seen in manganites, including colossal magnetoresistance (CMR), qualitatively and quantitatively. However, in the absence of long-ranged Coulomb interaction, a system described by such a model would actually phase separate, into macroscopic regions of l and b electrons, respectively. As we show in this paper, in the presence of Coulomb interactions, the macroscopic phase separation gets suppressed and instead nanometer scale regions of polarons interspersed with band electron puddles appear, constituting a kind of quantum Coulomb glass. We characterize the size scales and distribution of the inhomogeneity using computer simulations. For realistic values of the long-range Coulomb interaction parameter V-0, our results for the thresholds for occupancy of the b states are in agreement with, and hence support, the earlier approach mentioned above based on a configuration averaged DMFT treatment which neglects V-0; but the present work has features that cannot be addressed in the DMFT framework. Our work points to an interplay of strong correlations, long-range Coulomb interaction, and dopant ion disorder, all inevitably present in transition metal oxides as the origin of nanoscale inhomogeneities rather than disorder frustrated phase competition as is generally believed. As regards manganites, it argues against explanations for CMR based on disorder frustrated phase separation and for an intrinsic origin of CMR. Based on this, we argue that the observed micrometer (meso) scale inhomogeneities owe their existence to extrinsic causes, e.g., strain due to cracks and defects. We suggest possible experiments to validate our speculation.
Resumo:
The X-ray crystal structures of 4-butyl-1,2-diphenylpyrazolidine-3,5-dione (phenylbutazone)(I). and its 2 : 1 complex (II) with piperazine have been determined by direct methods and the structures refined to R 0.096 (2 300 observed reflections measured by diffractometer) and 0.074 (2 494 observed reflections visuallyestimated). Crystals are monoclinic, space group P21/c; for (I)a= 21.695(4), b= 5.823(2), c= 27.881(4)Å, = 108.06 (10)°, Z= 8, and for (II)a= 8.048(4), b= 15.081(4), c= 15.583(7)Å, = 95.9(3)°, Z= 2. The two crystallographically independant molecules in the structure of (I) are similar except for the conformation of the butyl group, which is disordered in one of the molecules. In the pyrazolidinedione group, the two C–C bonds are single and the two C–O bonds double. The two nitrogen atoms in the five-membered ring are pyramidal with the attached phenyl groups lying on the opposite sides of the mean plane of the ring. The phenylbutazone molecule in (II) exists as a negative ion owing to deprotonation of C-4. C-4 is therefore trigonal and the orientation of the Bu group with respect to the pyrazolidinedione group is considerably different from that in (I); there is also considerable electron delocalization along the C–O and C–C bonds. These changes in geometry and electronic structure may relate to biological activity. The doubly charged cationic piperazine molecule exists in the chair form with the nitrogen atoms at the apices. The crystal structure of (II) is stabilized by ionic interactions and N–H O hydrogen bonds.
Resumo:
Relative band strengths of diatomic molecules for which the product of Franck-Condon factor and r-centroid is approximately equal to 1 for (0,0) band can be determined by a simple method which will be in good agreement with the smoothed array of experimental values.
Resumo:
Through-bond interactions in 1,4-dehydrobenzene preferentially stabilize the out-of-phase combination of the radical hydrids, The resultant splitting between the frontier orbitals is crucial in making Bergman cyclization a symmetry-allowed process. Orbital symmetry also inhibits the radical centers from forming a C-C bond, enabling the biradical to survive as a local minimum capable of intermolecular hydrogen abstraction, Both these factors, which are important in the design of DNA cleaving molecules, are confirmed through calculations on biradicals formed from diynes in which through-bond interactions stabilize the in-phase combination of hybrids at the radical centers.
Resumo:
Three inorganic-organic hybrid framework cadmium thiosulfate phases have been investigated for adsorption and photodegradation of organic dye molecules. Different classes of organic dyes, viz., triaryl methane, azo, xanthene, anthraquinone, have been studied. The anionic dyes with sulfonate groups appear to readily adsorb on the cadmium thiosulfate compounds in an aqueous medium. The adsorption of the dye molecules, however, does not create any structural changes on the cadmium thiosulfate compounds, though weak electronic interactions have been observed. The adsorbed dyes have been desorbed partially in an alcoholic medium, suggesting possible applications in scavenging specific anionic dyes from the aqueous solutions. Langmuir adsorption/desorption isotherms have been used to model this behavior. UV-assisted (lambda(max) = 365 nm) photocatalytic decomposition studies on the cationic dyes indicate reasonable activity comparable with that of Degussa P-25 (TiO2) catalyst. Sunlight assisted photocatalyti studies have been carried out in detail employing hybrid framework compounds. The Langmuir-Hinshelwood kinetics model, employed to follow the degradation profile of the organic dyes, indicates that the photocatalytic degradation follows the order: triaryl methane > azo > xanthene.
Resumo:
First-principles calculations were performed for orthorhombic HgO, rhombohedral and cubic phases of HgTiO3 (HTO) and HgPbO3 (HPO). The calculations show that in the rhombohedral phase HTO is a direct gap insulator with a gap of ~1.6 eV. The rhombohedral phase of HPO, on the other hand, shows a weak metallic character. The results provide an explanation for the electrical properties of these compounds. The cubic phases of HTO and HPO are invariably metallic in nature, thereby suggesting that for HTO the rhombohedral–cubic transition must also be accompanied by a change in the electrical state. Examination of the electronic density of states of these systems revealed no significant on-site mixing of Hg 5d and Hg 6s states in any of these materials.
Resumo:
The reaction of the [(eta(5)-C5Me5)MoCl4] complex with [LiBH4 - TH F] in toluene at - 70 degrees C, followed by pyrolysis at 110 degrees C, afforded dark brown [(eta(5)-C5Me5Mo)(3)MoB9H18], 2, in parallel with the known [(eta(5)-C5Me5Mo)(2)B5H9], 1. Compound 2 has been characterized in solution by H-1, B-11, and C-13 NMR spectroscopy and elemental analysis, and the structural types were unequivocally established by crystallographic studies. The title compound represents a novel class of vertex-fused clusters in which a Mo atom has been fused in a perpendicular fashion between two molybdaborane clusters. Electronic structure calculations employing density functional theory yield geometries in agreement with the structure determinations, and on grounds of density functional theory calculations, we have analyzed the bonding patterns in the structure,
Resumo:
The effect of solvent on chemical reactivity has generally been explained on the basis of the dielectric constant and viscosity. However a number of spectroscopic studies, including UV-VIS, IR and Raman, has led to numerous empirical parameters to define solvent effect based on either solvating ability or polarity scale. These parameters include solvent polarizability, dipolarity, Lewis acidity and Lewis basicity, E-T(30), pi*, alpha, beta etc. However, from a structural point of view, we can separate solvation as static and dynamic processes. The static solvation basically relates to stabilization of the molecular structure by the solvent to attain the equilibrium structure, both in the intermediate and ground state. Dynamic solvation relates to solvent reorganization-induced dynamics prior to the structural reorganization to reach the equilibrium state. In this paper, we present (a) structural distortions induced by the solvent due to preferential solvation of the triplet excited state, and (b) the importance of dynamic solvation induced by vibronic coupling (pseudo-Jahn-Teller coupling). The examples include the effect of solvent on structure and reactivity of excited states of 2,2,2-trifluoroacetophenone (TFA). Based on the comparison of time resolved resonance Raman (TR3) data of TFA and other substituted acetophenone systems, it was found that change in solvent polarity indeed results in electronic state switching and structural changes in the excited state, which explains the trend in reactivity. Further, a TR3 study of fluoranil (FA) in the triplet excited state in solvents of varying polarities indicates that the structure of FA in the triplet excited state is determined by vibronic coupling effects and thus distorted structure. These experimental results have been well supported by density functional theoretical computational studies.
Resumo:
Classical and non-classical isomers of both neutral and dianionic BC2P2H3 species, which are isolobal to Cp+ and Cp-, are studied at both B3LYP/6-311++G(d,p) and G3B3 levels of theory. The global minimum structure given by B3LYP/6-311+ + G(d,p) for BC2P2H3 is based on a vinylcyclopropenyl-type structure, whereas BC2P2H32- has a planar aromatic cyclopentadienyl-ion-like structure. However, at the G3B3 level, there are three low-energy isomers for BC2P2H3: 1)tricyclopentane, 2) nido and 3) vinylcyclopropenyl-type structures, all within 1.7 kcal mol(-1) of each other. On the contrary, for the dianionic species the cyclic planar structure is still the minimum. In comparison to the isolobal Cp+ and HnCnP5-n+ isomers, BC2P2H3 shows a competition between pi-delocalised vinylcyclopropenyl- and cluster-type structures (nido and tricyclopentane). Substitution of H on C by tBu, and H on B by Ph, in BC2P2H3 increases the energy difference between the low-lying isomers, giving the lowest energy structure as a tricyclopentane type. Similar substitution in BC2P2H32- merely favours different positional isomers of the cyclic planar geometry, as observed in 1) isoelectronic neutral heterodiphospholes EtBu2C2P2 (E=S, Se, Te), 2) monoanionic heterophospholyl rings EtBu2C2P2 (E=P-, As-, Sb-) and 3) polyphospholyl rings anions tBu(5-n)C(n)P(5-n) (n=0-5). The principal factors that affect the stability of three-, four-, and five-membered ring and acyclic geometrical and positional isomers of neutral and dianionic BC2P2H3 isomers appear to be: 1) relative bond strengths, 2) availability of electrons for the empty 2p boron orbital and 3) steric effects of the tBu groups in the HBC(2)P(2)tBu(2) systems.
Resumo:
In this paper, we exploit the idea of decomposition to match buyers and sellers in an electronic exchange for trading large volumes of homogeneous goods, where the buyers and sellers specify marginal-decreasing piecewise constant price curves to capture volume discounts. Such exchanges are relevant for automated trading in many e-business applications. The problem of determining winners and Vickrey prices in such exchanges is known to have a worst-case complexity equal to that of as many as (1 + m + n) NP-hard problems, where m is the number of buyers and n is the number of sellers. Our method proposes the overall exchange problem to be solved as two separate and simpler problems: 1) forward auction and 2) reverse auction, which turns out to be generalized knapsack problems. In the proposed approach, we first determine the quantity of units to be traded between the sellers and the buyers using fast heuristics developed by us. Next, we solve a forward auction and a reverse auction using fully polynomial time approximation schemes available in the literature. The proposed approach has worst-case polynomial time complexity. and our experimentation shows that the approach produces good quality solutions to the problem. Note to Practitioners- In recent times, electronic marketplaces have provided an efficient way for businesses and consumers to trade goods and services. The use of innovative mechanisms and algorithms has made it possible to improve the efficiency of electronic marketplaces by enabling optimization of revenues for the marketplace and of utilities for the buyers and sellers. In this paper, we look at single-item, multiunit electronic exchanges. These are electronic marketplaces where buyers submit bids and sellers ask for multiple units of a single item. We allow buyers and sellers to specify volume discounts using suitable functions. Such exchanges are relevant for high-volume business-to-business trading of standard products, such as silicon wafers, very large-scale integrated chips, desktops, telecommunications equipment, commoditized goods, etc. The problem of determining winners and prices in such exchanges is known to involve solving many NP-hard problems. Our paper exploits the familiar idea of decomposition, uses certain algorithms from the literature, and develops two fast heuristics to solve the problem in a near optimal way in worst-case polynomial time.