166 resultados para Electromagnetic modelling
Resumo:
Numerical and experimental studies on transport phenomena during solidification of an aluminum alloy in the presence of linear electromagnetic stirring are performed. The alloy is electromagnetically stirred to produce semisolid slurry in a cylindrical graphite mould placed in the annulus of a linear electromagnetic stirrer. The mould is cooled at the bottom, such that solidification progresses from the bottom to the top of the cylindrical mould. A numerical model is developed for simulating the transport phenomena associated with the solidification process using a set of single-phase governing equations of mass. momentum, energy. and species conservation. The viscosity variation of the slurry, used in the model, is determined experimentally using a rotary viscometer. The set of governing equations is solved using a pressure-based finite volume technique, along with an enthalpy based phase change algorithm. The numerical study involves prediction of temperature, velocity, species and solid fraction distribution in the mould. Corresponding solidification experiments are performed, with time-temperature history recorded at key locations. The microstructures at various temperature measurement locations in the solidified billet are analyzed. The numerical predictions of temperature variations are in good agreement with experiments, and the predicted flow field evolution correlates well with the microstructures observed at various locations.
Resumo:
4-Methyl-5-beta-hydroxyethylthiazole kinase (ThiK) catalyses the phosphorylation of the hydroxyl group of 4-methyl-5-beta-hydroxyethylthiazole. This work reports the first crystal structure of an archaeal ThiK: that from Pyrococcus horikoshii OT3 (PhThiK) at 1.85 angstrom resolution with a phosphate ion occupying the position of the beta-phosphate of the nucleotide. The topology of this enzyme shows the typical ribokinase fold of an alpha/beta protein. The overall structure of PhThiK is similar to those of Bacillus subtilis ThiK (BsThiK) and Enterococcus faecalis V583 ThiK (EfThiK). Sequence analysis of ThiK enzymes from various sources indicated that three-quarters of the residues involved in interfacial regions are conserved. It also revealed that the amino-acid residues in the nucleotide-binding, magnesium ion-binding and substrate-binding sites are conserved. Binding of the nucleotide and substrate to the ThiK enzyme do not influence the quaternary association (trimer) as revealed by the crystal structure of PhThiK.
Resumo:
The knowledge of hydrological variables (e. g. soil moisture, evapotranspiration) are of pronounced importance in various applications including flood control, agricultural production and effective water resources management. These applications require the accurate prediction of hydrological variables spatially and temporally in watershed/basin. Though hydrological models can simulate these variables at desired resolution (spatial and temporal), often they are validated against the variables, which are either sparse in resolution (e. g. soil moisture) or averaged over large regions (e. g. runoff). A combination of the distributed hydrological model (DHM) and remote sensing (RS) has the potential to improve resolution. Data assimilation schemes can optimally combine DHM and RS. Retrieval of hydrological variables (e. g. soil moisture) from remote sensing and assimilating it in hydrological model requires validation of algorithms using field studies. Here we present a review of methodologies developed to assimilate RS in DHM and demonstrate the application for soil moisture in a small experimental watershed in south India.
Resumo:
In this paper, numerical modelling of fracture in concrete using two-dimensional lattice model is presented and also a few issues related to lattice modelling technique applicable to concrete fracture are reviewed. A comparison is made with acoustic emission (AE) events with the number of fractured elements. To implement the heterogeneity of the plain concrete, two methods namely, by generating grain structure of the concrete using Fuller's distribution and the concrete material properties are randomly distributed following Gaussian distribution are used. In the first method, the modelling of the concrete at meso level is carried out following the existing methods available in literature. The shape of the aggregates present in the concrete are assumed as perfect spheres and shape of the same in two-dimensional lattice network is circular. A three-point bend (TPB) specimen is tested in the experiment under crack mouth opening displacement (CMOD) control at a rate of 0.0004 mm/sec and the fracture process in the same TPB specimen is modelled using regular triangular 2D lattice network. Load versus crack mouth opening isplacement (CMOD) plots thus obtained by using both the methods are compared with experimental results. It was observed that the number of fractured elements increases near the peak load and beyond the peak load. That is once the crack starts to propagate. AE hits also increase rapidly beyond the peak load. It is compulsory here to mention that although the lattice modelling of concrete fracture used in this present study is very similar to those already available in literature, the present work brings out certain finer details which are not available explicitly in the earlier works.
Resumo:
Accurate estimations of water balance are needed in semi-arid and sub-humid tropical regions, where water resources are scarce compared to water demand. Evapotranspiration plays a major role in this context, and the difficulty to quantify it precisely leads to major uncertainties in the groundwater recharge assessment, especially in forested catchments. In this paper, we propose to assess the importance of deep unsaturated regolith and water uptake by deep tree roots on the groundwater recharge process by using a lumped conceptual model (COMFORT). The model is calibrated using a 5 year hydrological monitoring of an experimental watershed under dry deciduous forest in South India (Mule Hole watershed). The model was able to simulate the stream discharge as well as the contrasted behaviour of groundwater table along the hillslope. Water balance simulated for a 32 year climatic time series displayed a large year-to-year variability, with alternance of dry and wet phases with a time period of approximately 14 years. On an average, input by the rainfall was 1090 mm year(-1) and the evapotranspiration was about 900 mm year(-1) out of which 100 mm year(-1) was uptake from the deep saprolite horizons. The stream flow was 100 mm year(-1) while the groundwater underflow was 80 mm year(-1). The simulation results suggest that (i) deciduous trees can uptake a significant amount of water from the deep regolith, (ii) this uptake, combined with the spatial variability of regolith depth, can account for the variable lag time between drainage events and groundwater rise observed for the different piezometers and (iii) water table response to recharge is buffered due to the long vertical travel time through the deep vadose zone, which constitutes a major water reservoir. This study stresses the importance of long term observations for the understanding of hydrological processes in tropical forested ecosystems. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Randomness in the source condition other than the heterogeneity in the system parameters can also be a major source of uncertainty in the concentration field. Hence, a more general form of the problem formulation is necessary to consider randomness in both source condition and system parameters. When the source varies with time, the unsteady problem, can be solved using the unit response function. In the case of random system parameters, the response function becomes a random function and depends on the randomness in the system parameters. In the present study, the source is modelled as a random discrete process with either a fixed interval or a random interval (the Poisson process). In this study, an attempt is made to assess the relative effects of various types of source uncertainties on the probabilistic behaviour of the concentration in a porous medium while the system parameters are also modelled as random fields. Analytical expressions of mean and covariance of concentration due to random discrete source are derived in terms of mean and covariance of unit response function. The probabilistic behaviour of the random response function is obtained by using a perturbation-based stochastic finite element method (SFEM), which performs well for mild heterogeneity. The proposed method is applied for analysing both the 1-D as well as the 3-D solute transport problems. The results obtained with SFEM are compared with the Monte Carlo simulation for 1-D problems.
Resumo:
We have recently implicated heat shock protein 90 from Plasmodium falciparum (PfHsp90) as a potential drug target against malaria. Using inhibitors specific to the nucleotide binding domain of Hsp90, we have shown potent growth inhibitory effects on development of malarial parasite in human erythrocytes. To gain better understanding of the vital role played by PfHsp90 in parasite growth, we have modeled its three dimensional structure using recently described full length structure of yeast Hsp90. Sequence similarity found between PfHsp90 and yeast Hsp90 allowed us to model the core structure with high confidence. The superimposition of the predicted structure with that of the template yeast Hsp90 structure reveals an RMSD of 3.31 angstrom. The N-terminal and middle domains showed the least RMSD (1.76 angstrom) while the more divergent C-terminus showed a greater RMSD (2.84 angstrom) with respect to the template. The structure shows overall conservation of domains involved in nucleotide binding, ATPase activity, co-chaperone binding as well as inter-subunit interactions. Important co-chaperones known to modulate Hsp90 function in other eukaryotes are conserved in malarial parasite as well. An acidic stretch of amino acids found in the linker region, which is uniquely extended in PfHsp90 could not be modeled in this structure suggesting a flexible conformation. Our results provide a basis to compare the overall structure and functional pathways dependent on PfHsp90 in malarial parasite. Further analysis of differences found between human and parasite Hsp90 may make it possible to design inhibitors targeted specifically against malaria.
Resumo:
In the present work, a numerical study is performed to predict the effect of process parameters on transport phenomena during solidification of aluminium alloy A356 in the presence of electromagnetic stirring. A set of single-phase governing equations of mass, momentum, energy and species conservation is used to represent the solidification process and the associated fluid flow, heat and mass transfer. In the model, the electromagnetic forces are incorporated using an analytical solution of Maxwell equation in the momentum conservation equations and the slurry rheology during solidification is represented using an experimentally determined variable viscosity function. Finally, the set of governing equations is solved for various process conditions using a pressure based finite volume technique, along with an enthalpy based phase change algorithm. In present work, the effect of stirring intensity and cooling rate are considered. It is found that increasing stirring intensity results in increase of slurry velocity and corresponding increase in the fraction of solid in the slurry. In addition, the increasing stirring intensity results uniform distribution of species and fraction of solid in the slurry. It is also found from the simulation that the distribution of solid fraction and species is dependent on cooling rate conditions. At low cooling rate, the fragmentation of dendrites from the solid/liquid interface is more.
Resumo:
Zervamicin-IIB (Zrv-IIB) is a 16 residue peptaibol which forms voltage-activated, multiple conductance level channels in planar lipid bilayers. A molecular model of Zrv-IIB channels is presented. The structure of monomeric Zrv-IIB is based upon the crystal structure of Zervamicin-Leu. The helical backbone is kinked by a hydroxyproline residue at position 10. Zrv-IIB channels are modelled as helix bundles of from 4 to 8 parallel helices surrounding a central pore. The monomers are packed with their C-terminal helical segments in close contact, and the bundles are stabilized by hydrogen bonds between glutamine 11 and hydroxyproline 10 of adjacent helices. Interaction energy profiles for movement of three different probes species (K+, Cl- and water) through the central pore are analyzed. The conformations of: (a) the sidechain of glutamine 3; (b) the hydroxyl group of hydroxyproline 10; and (c) the C-terminal hydroxyl group are "optimized" in order to maximize favourable interactions between the channel and the probes, resulting in favourable interaction energy profiles for all three. This suggests that conformational flexibility of polar sidechains enables the channel lining to mimic an aqueous environment.
Resumo:
The instability of coupled longitudinal and transverse electromagnetic modes associated with long wavelengths is studied in bounded streaming plasmas. The main conclusions are as follows: (i) For long waves for which O (k 2)=0, in the absence of relative streaming motion of electrons and ions and aωp/c<0.66, the whole spectrum of harmonic waves is excited due to finite temperature and boundary effects consisting of two subseries. One of these subseries can be identified with Tonks-Dattner resonance oscillations for the electrons, and arises primarily due to the electrons with frequencies greater than the electrostatic plasma frequency corresponding to the electron density in the midplane in the undisturbed state. The other series arises primarily due to ion motion. When aωp/c>0.66, in addition to the above spectrum of harmonic waves, the system admits an infinite number of growing and decaying waves. The instability associated with these modes is found to arise due to the interaction of the waves inside the plasma with the external electromagnetic field. (ii) For modes with comparatively shorter wavelengths for which O (k3)=0, the coupling due to finite temperature sets in, and it is found that the two series of harmonic waves obtained in (i) deriving energy from the transverse modes also become unstable. Thus, for these wavelengths the system admits three sets of growing and decaying modes, first two for all values of aωp/c and the third for (aωp/c) > 0.66. (iii) The presence of streaming velocities introduces various other coupling mechanisms, and we find that even for the wavelengths for which O (k2)=0, we get three sets of growing and decaying waves. The numerical values for the growth rates show that the streaming velocities enhance the growth rates of instability significantly.
Resumo:
The modes of binding of alpha- and beta-anomers of D-galactose, D-fucose and D-glucose to L-arabinose-binding protein (ABP) have been studied by energy minimization using the low resolution (2.4 A) X-ray data of the protein. These studies suggest that these sugars preferentially bind in the alpha-form to ABP, unlike L-arabinose where both alpha- and beta-anomers bind almost equally. The best modes of binding of alpha- and beta-anomers of D-galactose and D-fucose differ slightly in the nature of the possible hydrogen bonds with the protein. The residues Arg 151 and Asn 232 of ABP from bidentate hydrogen bonds with both L-arabinose and D-galactose, but not with D-fucose or D-glucose. However in the case of L-arabinose, Arg 151 forms hydrogen bonds with the hydroxyl group at the C-4 atom and the ring oxygen, whereas in case of D-galactose it forms bonds with the hydroxyl groups at the C-4 and C-6 atoms of the pyranose ring. The calculated conformational energies also predict that D-galactose is a better inhibitor than D-fucose and D-glucose, in agreement with kinetic studies. The weak inhibitor D-glucose binds preferentially to one domain of ABP leading to the formation of a weaker complex. Thus these studies provide information about the most probable binding modes of these sugars and also provide a theoretical explanation for the observed differences in their binding affinities.
Resumo:
Void breaking and formation in a packed bed are important phenomena in stabilising and optimising the performance of reactors such as the blast furnace, spouted bed and catalytic regenerator. These phenomena have been studied using a mathematical model. The model is based on a previously published force balance approach to predict the cavity size. Limited numbers of experiments, at room temperature, have been carried out in order to compare the experimental results with theory. A good agreement has been found between the experimental and theoretical results. In addition, the predictions have been compared with published data, which give reasonable agreement. The role of various forces (friction, pressure and bed weight) on void initiation and breaking has been investigated. The effect of bed height, particle diameter and density, void fraction, as well as gas flow rate on void formation and breaking has also been studied.
Resumo:
A higher-order theory of laminated composites under in-plane loads is developed. The displacement field is expanded in terms of the thickness co-ordinate, satisfying the zero shear stress condition at the surfaces of the laminate. Using the principle of virtual displacement, the governing equations and boundary conditions are established. Numerical results for interlaminar stresses arising in the case of symmetric laminates under uniform extension have been obtained and are compared with similar results available in the literature.
Resumo:
The interface between two polar semiconductors can support three types of phonon-plasmon-polariton modes propagating in three well-defined frequency windows ??1?[min(?1,?3),?R1], ??2?[max(?2,?4),?R2], and ??3?[min(?2,?4),?R3]. The limiting frequencies ?1,2,3,4 are defined by ?1(?)=0, ?2(?)=0, and ?R1,2,3 by ?1(?)+?2(?)=0, where ?i(?) are dielectric functions of the two media with i=1,2. The dispersion, decay distances, and polarization of the three modes are discussed. The variation of the limiting frequencies with the interface plasma parameter ???p22/?p12 reveals an interesting feature in the dispersion characteristics of these modes. For the interfaces for which the bulk coupled phonon-plasmon frequencies of medium 1 are greater than the LO frequency or are less than the TO frequency of medium 2, there exist two values of ?=?1 and ?2(1) for which ??1 and ??3 are zero, respectively. Hence, for these values of ?, the two interface modes defined by ??1 and ??3 propagate with constant frequencies equal to the bulk coupled phonon-plasmon frequencies of medium 1, i.e., without showing any dispersion.