240 resultados para Electrochemical deposition
Resumo:
Pt ions-CeO2 interaction in Ce1-xPtxO2-delta (x=0.02) has been studied for the first time by electrochemical method combined with x-ray diffraction and x-ray photoelectron spectroscopy. Working electrodes made of CeO2 and Ce0.98Pt0.02O2-delta mixed with 30% carbon are treated electrochemically between 0.0-1.2 V in potentiostatic (chronoamperometry) and potentiodynamic (cyclic voltametry) mode with reference to saturated calomel electrode. Reversible oxidation of Pt-0 to Pt2+ and Pt4+ state due to the applied positive potential is coupled to simultaneous reversible reduction of Ce4+ to Ce3+ state. CeO2 reduces to CeO2-y (y=0.35) after applying 1.2 V, which is not reversible; Ce0.98Pt0.02O2-delta reaches a steady state with Pt2+:Pt4+ in the ratio of 0.60:0.40 and Ce4+:Ce3+ in the ratio of 0.55:0.45 giving a composition Ce0.98Pt0.02O1.74 at 1.2 V, which is reversible. Composition of Pt ion substituted compound is reversible between Ce0.98Pt0.02O1.95 to Ce0.98Pt0.02O1.74 within the potential range of 0.0-1.2 V. Thus, Ce0.98Pt0.02O2-delta forms a stable electrode for oxidation of H2O to O-2 unlike CeO2. A linear relation between oxidation of Pt2+ to Pt4+ with simultaneous reduction in Ce4+ to Ce3+ is observed demonstrating Pt-CeO2 metal support interaction is due to reversible Pt-0/Pt2+/Pt4+ interaction with Ce4+/Ce3+ redox couple.
Resumo:
In the present investigation, two nozzle configurations are used for spray deposition, convergent nozzle (nozzle-A), and convergent nozzle with 2 mm parallel portion attached at its end (nozzle-C) without changing the exit area. First, the conditions for subambient aspiration pressure, i.e., pressure at the tip of the melt delivery tube, are established by varying the protrusion length of the melt delivery tube at different applied gas pressures for both of the nozzles. Using these conditions, spray deposits in a reproducible manner are successfully obtained for 7075 Al alloy. The effect of applied gas pressure, flight distance, and nozzle configuration on various characteristics of spray deposition, viz., yield, melt flow rate, and gas-to-metal ratio, is examined. The over-spray powder is also characterized with respect to powder size distribution, shape, and microstructure. Some of the results are explained with the help of numerical analysis presented in an earlier article.
Resumo:
A modified method has been developed for the deposition of transparent semiconducting thin films of tin oxide, involving the chemical vapour phase oxidation of tin iodide. These films show sheet resistances greater than 100 Ω/□ and an average optical transmission in the visible range exceeding 80%. The method avoids uncontrolled contamination, resulting in better reproducibility of the films. The films showed direct and indirect transitions and the possibility of an indirect forbidden transition. X-ray diffraction studies reveal that the films are polycrystalline. The low mobility values of the films have been attributed to the grain boundary scattering effect.
Resumo:
A two-state Ising model has been applied to the two-dimensional condensation of tymine at the mercury-water interface. The model predicts a quadratic dependence of the transition potential on temperature and on the logarithm of the adsorbate concentration. Both predictions have been confirmed experimentally.
Resumo:
Graphene oxide (GO) is assembled on a gold substrate by a layer-by-layer technique using a self-assembled cystamine monolayer. The negatively charged GO platelets are attached to the positively charged cystamine monolayer through electrostatic interactions. Subsequently, it is shown that the GO can be reduced electrochemically using applied DC bias by scanning the potential from 0 to -1 V vs a saturated calomel electrode in an aqueous electrolyte. The GO and reduced graphene oxide (RGO) are characterized by Raman spectroscopy and atomic force microscopy (AFM). A clear shift of the G band from 1610 cm-1 of GO to 1585 cm-1 of RGO is observed. The electrochemical reduction is followed in situ by micro Raman spectroscopy by carrying out Raman spectroscopic studies during the application of DC bias. The GO and RGO films have been characterized by conductive AFM that shows an increase in the current flow by at least 3 orders of magnitude after reduction. The electrochemical method of reducing GO may open up another way of controlling the reduction of GO and the extent of reduction to obtain highly conducting graphene on electrode materials.
Resumo:
The optimum conditions for the electrode position of cobalt were arrived at, from a study of the effect or variables on the planning characteristics of cobalt flu borate solutions.
Resumo:
The phenomenological theory of hemispherical growth is generalised to time-dependent nucleation and growth-rates. Special cases, which include models with diffusion-controlled rates, are analysed. Expressions are obtained for small and large time behaviour and peak characteristics of potentiostatic transients, and their use in model parameter estimation is discussed. Two earlier equations are corrected. Numerically calculated transients which are presented exhibit some interesting features such as a maximum preceding the steady state, oscillations and shoulder.
Resumo:
A general theory is evolved for a class of macrogrowth models which possess two independent growth-rates. Relations connecting growth-rates to growth geometry are established and some new growth forms are shown to result for models with passivation or diffusion-controlled rates. The corresponding potentiostatic responses, their small and large time behaviours and peak characteristics are obtained. Numerical transients are also presented. An empirical equation is derived as a special case and an earlier equation is corrected. An interesting stochastic result pertaining to nucleation events in the successive layers is proved.
Resumo:
By using the same current-time (I-t) curves, electrochemical kinetic parameters are determined by two methods, (a) using the ratio of current at a given potential to the diffusion-controlled limiting current and (b) curve fitting method, for the reduction of Cu(II)–CyDTA complex. The analysis by the method (a) shows that the rate determining step involves only one electron although the overall reduction of the complex involves two electrons suggesting thereby the stepwise reduction of the complex. The nature of I-t curves suggests the adsorption of intermediate species at the electrode surface. Under these circumstances more reliable kinetic parameters can be obtained by the method (a) compared to that of (b). Similar observations are found in the case of reduction of Cu(II)–EDTA complex.
Resumo:
Room-temperature zinc ion-conducting molten electrolytes based on acetamide, urea, and zinc perchlorate or zinc triflate have been prepared and characterized by various physicochemical, spectroscopic, and electrochemical techniques. The ternary molten electrolytes are easy to prepare and can be handled under ambient conditions. They show excellent stability, high ionic conductivity, relatively low viscosity, and other favorable physicochemical and electrochemical properties that make them good electrolytes for rechargeable zinc batteries. Specific conductivities of 3.4 and 0.5 mS cm(-1) at 25 degrees C are obtained for zinc-perchlorate-and zinc-triflate-containing melts, respectively. Vibrational spectroscopic data reveal that the free ion concentration is high in the optimized composition. Rechargeable Zn batteries have been assembled using the molten electrolytes, with gamma-MnO2 as the positive electrode and Zn as the negative electrode. They show excellent electrochemical characteristics with high discharge capacities. This study opens up the possibility of using acetamide-based molten electrolytes as alternate electrolytes in rechargeable zinc batteries. (C) 2009 The Electrochemical Society.
Resumo:
Spectroscopic and electrochemical redox properties of a series of fluorinated porphyrins bearing donor-acceptor groups and their Zn(II) and Cu(II) derivatives are presented. The magnitude of the ring reduction potentials and charge transfer properties derived from spectral data depend on the nature and position of the substituent(s), (nitro/dimethylamino) and the central metal ions.
Resumo:
Room temperature, magnesium ion conducting binary molten electrolyte consisting of acetamide and magnesium perchlorate has been prepared and characterized. The molten liquid is very stable and shows high ionic conductivity, of the order of several mS cm(-1) at 25 degrees C with other favourable physicochemical properties. Vibrational spectroscopic studies reveal that the free ion concentration is higher than that of ion pairs and aggregates in the melt. The electrochemical reversibility of magnesium deposition and dissolution is demonstrated using voltammetry and impedance studies. Preliminary studies on rechargeable batteries assembled using gamma-MnO2 and Mg metal as the electrodes together with the molten electrolyte show high discharge capacity.
Resumo:
Electrochemical reduction of hydrogen peroxide is studied on a sand-blasted stainless steel (SSS)electrode in an aqueous solution of NaClO4.The cyclic voltammetric reduction of H2O2 at low concentrations is characterized by a cathodic peak at -0 center dot 40 V versus standard calomel electrode(SCE).Cyclic voltammetry is studied by varying the concentration of H2O2 in the range from 0 center dot 2 mM to 20 mM and the sweep rate in the range from 2 to 100 mV s(-1)Voltammograms at concentrations of H2O2 higher than 2 mM or at high sweep rates consist of an additional current peak, which may be due to the reduction of adsorbed species formed during the reduction of H2O2. Amperometric determination of H2O2 at -0 center dot 50 V vs SCEprovides the detection limit of 5 A mu M H2O2. A plot of current density versus concentration has two segments suggesting a change in the mechanism of H2O2 reduction at concentrations of H2O2 a parts per thousand yen 2 mM. From the rotating disc electrode study, diffusion co-efficient of H2O2 and rate constant for reduction of H2O2 are evaluated.
Resumo:
Polymer electrolytes are known to possess excellent physicochemical properties that are very useful for electrochemical energy systems. The mobility in polymer electrolytes is understood to be mainly due to the segmental motion of polymer chains and the ion transport is generally restricted to the amorphous phase of the polymer. Gel polymer electrolytes (GPE) that are formed using plastizicers and polymers along with ionic salts are known to exhibit liquid-like ionic conductivity while maintaining the dimensional stability of a solid matrix. In the present study, the preparation and characterization of poly(vinyl alcohol)-based hydrogel membranes (PHMEs) as electrolyte for electrochemical capacitors have been reported. VaryingHClO4 dopant concentration leads to different characteristics of the capacitors. The EC comprising PHME doped with 2 M HClO4 and black pearl carbon (BPC) electrodes has been found to exhibit a maximum specific capacitance value of 97 F g(-1), a phase angle value of 78A degrees, and a maximum charge-discharge coulombic efficiency of 88%.