230 resultados para Electric waves.
Resumo:
The dispersive characteristics of Alfvdn Surface Waves (ASW) along a moving plasma surrounded by a stationary plasma is discussed. The stability curves for the symmetric and the asymmetric modes are also discussed.
Resumo:
An electric field (100 V/cm at 230°C and 150°C) has been applied to ammonium perchlorate (AP)/polystyrene (PS) propellant mixtures in order to understand the low temperature decomposition behavior of the propellant. The charge-carrying species is anionic in nature at 230°C, which could be ClO4−, but is cationic at 150°C, which could be either NH4+ or H+. These results are parallel to that observed for pure ammonium perchlorate (AP) pellets [1]. The burning rate (r' ) of the propellant was found to follow the same trend as that for the thermal decomposition of the propellant on application of an electric field. At 150°C Image was higher at the −ve electrode than at the +ve electrode, but at 230°C just the opposite was observed. Kinetic studies have confirmed that the decomposition of the orthorhombic AP follows two mechanism corresponding to E = 30 kcal mol−1 (180–230°C) and E = 15 kcal mol−1 (150–180°C).
Resumo:
Existence of a periodic progressive wave solution to the nonlinear boundary value problem for Rayleigh surface waves of finite amplitude is demonstrated using an extension of the method of strained coordinates. The solution, obtained as a second-order perturbation of the linearized monochromatic Rayleigh wave solution, contains harmonics of all orders of the fundamental frequency. It is shown that the higher harmonic content of the wave increases with amplitude, but the slope of the waveform remains finite so long as the amplitude is less than a critical value.
Resumo:
A simple equation to predict the breakdown voltages for binary mixtures (Vmix) of electronegative gases (SF6, CCl2F2) and buffer gases (N2, N2O, CO2, air) under uniform electric field has been proposed. Values of Vmix evaluated using this equation for mixtures of SF6-N2, SF6-air, SF6-N2O, SF6-CO2 and CCl2F2-N2 over a wide range of pd show an excellent agreement with the experimentally measured data available in the literature.
Resumo:
A simple formula is developed to predict the sparking potentials of SF6 and SF6-gas mixture in uniform and non-uniform fields. The formula has been shown to be valid over a very wide range from 1 to 1800 kPa·cm of pressure and electrode gap separation for mixtures containing 5 to 100% SF6. The calculated values are found to be in good agreement with the previously reported measurements in the literature. The formula should aid design engineers in estimating electrode-spacings and clearances in power apparatus and systems.
Resumo:
An earlier superfluid aether model pairing fermionic and antifermionic fields is invoked to explain Rauch's time dependent neutron interference results which now suggest that microobjects are waves and particles simultaneously. The covariant superfluid provides a medium which carries real Einstein-de Broglie “pilot” waves. Further consequences are discussed.
Resumo:
A pair of semi-linear hyperbolic partial differential equations governing the slow variations in amplitude and phase of a quasi-monochromatic finite-amplitude Love-wave on an isotropic layered half-space is derived using the method of multiple-scales. The analysis of the exact solution of these equations for a signalling problem reveals that the amplitude of the wave remains constant along its characteristic and that the phase of the wave increases linearly behind the wave-front.
Resumo:
The nonlinear propagation characteristics of surface acoustic waves on an isotropic elastic solid have been studied in this paper. The solution of the harmonic boundary value problem for Rayleigh waves is obtained as a generalized Fourier series whose coefficients are proportional to the slowly varying amplitudes of the various harmonics. The infinite set of coupled equations for the amplitudes when solved exhibit an oscillatory slow variation signifying a continuous transfer of energy back and forth among the various harmonics. A conservation relation is derived among all the harmonic amplitudes.
Resumo:
Surface instability of a collisionless semi-infinite current carrying plasma is studied. The semi-infinite plasma bounded by a plane surface is under the influence of a high frequency (hf) field. There are two classes of surface modes. One is a normal extension of zero high frequency field and the other due entirely to the presence ofhf field. As expected, with the increase in thehf field, the growth rates of the surface instabilities decrease. There are regions defined by the electron drift velocityu where the unstable surface and bulk regions overlap. The interesting result is that unlike the bulk plasma, there is a stable region on theu-axis flanked by two unstable regions. The width of this stable region increases with the increase in the field strength.
Resumo:
The Alfvén surface waves propagating along a viscous conducting fluid-vacuum interface have been studied. It is found that besides the "ordinary" Alfvén surface waves, modified by viscosity effects, the interface can support a second mode which is the over-damped solution of the dispersion equation. The possibility of observation of a two-mode structure of Alfvén surface waves in the laboratory and in the solar coronal plasmas is discussed.
Resumo:
By using a perturbation technique, the Korteweg-de Vries equation is derived for a mixture of warm-ion fluid and hot, isothermal electrons. Stationary solutions are obtained for this equation and are compared with the corresponding solutions for a mixture consisting of cold-ion fluid and hot, isothermal electrons.
Resumo:
The Alfven surface waves can arise due to the discontinuity in the Alfven speed across the interface along which these waves propagate. This note studies the relationship between v A1 and v A2 which is required for the existence of Alfven surface waves in low-beta plasma.
Resumo:
he notion of the gravity-induced electric field has been applied to an entire self-gravitating massive body. The resulting electric polarization of the otherwise neutral body, when taken in conjunction with the latter's rotation, is shown to generate an axial-magnetic field of the right type and order of magnitude for certain astrophysical objects. In the present treatment the electric polarization is calculated in the ion-continuum Thomas-Fermi approximation while the electrodynamics of the continuous medium is treated in the nonrelativistic approximation.
Resumo:
High frequency three-wave nonlinear 'explosive' interaction of the surface modes of a semi-infinite beam-plasma system under no external field is investigated. The conditions that favour nonlinear instability, keep the plasma linearly stable. The beam runs parallel to the surface. If at least one of the three wave vectors of the surface modes is parallel to the beam, explosive interaction at the surface takes place after it has happened in the plasma bulk, provided the bulk waves propagate almost perpendicular to the surface and are of short wavelength. On the other hand if the bulk modes have long wavelength and propagate almost parallel to the surface, the surface modes can 'explode' first.
Resumo:
An electric field (100 V/cm at 230°C and 150°C) has been applied to ammonium perchlorate (AP)/polystyrene (PS) propellant mixtures in order to understand the low temperature decomposition behavior of the propellant. The charge-carrying species is anionic in nature at 230°C, which could be ClO4−, but is cationic at 150°C, which could be either NH4+ or H+. These results are parallel to that observed for pure ammonium perchlorate (AP) pellets [1]. The burning rate (Image ) of the propellant was found to follow the same trend as that for the thermal decomposition of the propellant on application of an electric field. At 150°C Image was higher at the −ve electrode than at the +ve electrode, but at 230°C just the opposite was observed. Kinetic studies have confirmed that the decomposition of the orthorhombic AP follows two mechanism corresponding to E = 30 kcal mol−1 (180–230°C) and E = 15 kcal mol−1 (150–180°C).