128 resultados para Einstein equations
Resumo:
It is shown that a method based on the principle of analytic continuation can be used to solve a set of inhomogeneous infinite simultaneous equations encountered in the analysis of surface acoustic wave propagation along the periodically perturbed surface of a piezoelectric medium.
Resumo:
The theory of Varley and Cumberbatch [l] giving the intensity of discontinuities in the normal derivatives of the dependent variables at a wave front can be deduced from the more general results of Prasad which give the complete history of a disturbance not only at the wave front but also within a short distance behind the wave front. In what follows we omit the index M in Eq. (2.25) of Prasad [2].
Resumo:
An error-free computational approach is employed for finding the integer solution to a system of linear equations, using finite-field arithmetic. This approach is also extended to find the optimum solution for linear inequalities such as those arising in interval linear programming probloms.
Resumo:
It is shown that a method based on the principle of analytic continuation can be used to solve a set of infinite simultaneous equations encountered in solving for the electric field of a periodic electrode structure.
Resumo:
Using the framework of a new relaxation system, which converts a nonlinear viscous conservation law into a system of linear convection-diffusion equations with nonlinear source terms, a finite variable difference method is developed for nonlinear hyperbolic-parabolic equations. The basic idea is to formulate a finite volume method with an optimum spatial difference, using the Locally Exact Numerical Scheme (LENS), leading to a Finite Variable Difference Method as introduced by Sakai [Katsuhiro Sakai, A new finite variable difference method with application to locally exact numerical scheme, journal of Computational Physics, 124 (1996) pp. 301-308.], for the linear convection-diffusion equations obtained by using a relaxation system. Source terms are treated with the well-balanced scheme of Jin [Shi Jin, A steady-state capturing method for hyperbolic systems with geometrical source terms, Mathematical Modeling Numerical Analysis, 35 (4) (2001) pp. 631-645]. Bench-mark test problems for scalar and vector conservation laws in one and two dimensions are solved using this new algorithm and the results demonstrate the efficiency of the scheme in capturing the flow features accurately.
Resumo:
A fully implicit integration method for stochastic differential equations with significant multiplicative noise and stiffness in both the drift and diffusion coefficients has been constructed, analyzed and illustrated with numerical examples in this work. The method has strong order 1.0 consistency and has user-selectable parameters that allow the user to expand the stability region of the method to cover almost the entire drift-diffusion stability plane. The large stability region enables the method to take computationally efficient time steps. A system of chemical Langevin equations simulated with the method illustrates its computational efficiency.
Resumo:
In this paper, we study the Einstein's photoemission from III-V, II-VI, IV-VI and HgTe/CdTe quantum well superlattices (QWSLs) with graded interfaces and quantum well effective mass superlattices in the presence of a quantizing magnetic field on the basis of newly formulated dispersion relations in the respective cases. Besides, the same has been studied from the afore-mentioned quantum dot superlattices and it appears that the photoemission oscillates with increasing carrier degeneracy and quantizing magnetic field in different manners. In addition, the photoemission oscillates with film thickness and increasing photon energy in quantum steps together with the fact that the solution of the Boltzmann transport equation will introduce new physical ideas and new experimental findings under different external conditions. The influence of band structure is apparent from all the figures and we have suggested three applications of the analyses of this paper in the fields of superlattices and microstructures.
Resumo:
We consider a modification of the three-dimensional Navier-Stokes equations and other hydrodynamical evolution equations with space-periodic initial conditions in which the usual Laplacian of the dissipation operator is replaced by an operator whose Fourier symbol grows exponentially as e(vertical bar k vertical bar/kd) at high wavenumbers vertical bar k vertical bar. Using estimates in suitable classes of analytic functions, we show that the solutions with initially finite energy become immediately entire in the space variables and that the Fourier coefficients decay faster than e-(C(k/kd) ln(vertical bar k vertical bar/kd)) for any C < 1/(2 ln 2). The same result holds for the one-dimensional Burgers equation with exponential dissipation but can be improved: heuristic arguments and very precise simulations, analyzed by the method of asymptotic extrapolation of van der Hoeven, indicate that the leading-order asymptotics is precisely of the above form with C = C-* = 1/ ln 2. The same behavior with a universal constant C-* is conjectured for the Navier-Stokes equations with exponential dissipation in any space dimension. This universality prevents the strong growth of intermittency in the far dissipation range which is obtained for ordinary Navier-Stokes turbulence. Possible applications to improved spectral simulations are briefly discussed.
Resumo:
For the first time, we find the complex solitons for a quasi-one-dimensional Bose-Einstein condensate with two-and three-body interactions. These localized solutions are characterized by a power law behaviour. Both dark and right solitons can be excited in the experimentally allowed parameter domain, when two-and three-body interactions are,respectively, repulsive and attractive. The dark solitons travel with a constant speed, which is quite different from the Lieb mode, where profiles with different speeds, bounded above by sound velocity, can exist for specified interaction strengths. We also study the properties of these solitons in the presence of harmonic confinement with time-dependent nonlinearity and loss. The modulational instability and the Vakhitov-Kolokolov criterion of stability are also studied.
Resumo:
A new framework is proposed in this work to solve multidimensional population balance equations (PBEs) using the method of discretization. A continuous PBE is considered as a statement of evolution of one evolving property of particles and conservation of their n internal attributes. Discretization must therefore preserve n + I properties of particles. Continuously distributed population is represented on discrete fixed pivots as in the fixed pivot technique of Kumar and Ramkrishna [1996a. On the solution of population balance equation by discretization-I A fixed pivot technique. Chemical Engineering Science 51(8), 1311-1332] for 1-d PBEs, but instead of the earlier extensions of this technique proposed in the literature which preserve 2(n) properties of non-pivot particles, the new framework requires n + I properties to be preserved. This opens up the use of triangular and tetrahedral elements to solve 2-d and 3-d PBEs, instead of the rectangles and cuboids that are suggested in the literature. Capabilities of computational fluid dynamics and other packages available for generating complex meshes can also be harnessed. The numerical results obtained indeed show the effectiveness of the new framework. It also brings out the hitherto unknown role of directionality of the grid in controlling the accuracy of the numerical solution of multidimensional PBEs. The numerical results obtained show that the quality of the numerical solution can be improved significantly just by altering the directionality of the grid, which does not require any increase in the number of points, or any refinement of the grid, or even redistribution of pivots in space. Directionality of a grid can be altered simply by regrouping of pivots.
Resumo:
In this paper, we show existence and uniqueness of a solution to a functional differential equation with infinite delay. We choose an appropriate Frechet space so as to cover a large class of functions to be used as initial functions to obtain existence and uniqueness of solutions.
Resumo:
In this paper, we describe how to analyze boundary value problems for third-order nonlinear ordinary differential equations over an infinite interval. Several physical problems of interest are governed by such systems. The seminumerical schemes described here offer some advantages over solutions obtained by using traditional methods such as finite differences, shooting method, etc. These techniques also reveal the analytic structure of the solution function. For illustrative purposes, several physical problems, mainly drawn from fluid mechanics, are considered; they clearly demonstrate the efficiency of the techniques presented here.
Resumo:
In this paper we shall study a fractional order functional integral equation. In the first part of the paper, we proved the existence and uniqueness of mile and global solutions in a Banach space. In the second part of the paper, we used the analytic semigroups theory oflinear operators and the fixed point method to establish the existence, uniqueness and convergence of approximate solutions of the given problem in a separable Hilbert space. We also proved the existence and convergence of Faedo-Galerkin approximate solution to the given problem. Finally, we give an example.