277 resultados para EXPERIMENTAL REALIZATION
Resumo:
We investigate the Einstein relation for the diffusivity-mobility ratio (DMR) for n-i-p-i and the microstructures of nonlinear optical compounds on the basis of a newly formulated electron dispersion law. The corresponding results for III-V, ternary and quaternary materials form a special case of our generalized analysis. The respective DMRs for II-VI, IV-VI and stressed materials have been studied. It has been found that taking CdGeAs2, Cd3As2, InAs, InSb, Hg1−xCdxTe, In1−xGaxAsyP1−y lattices matched to InP, CdS, PbTe, PbSnTe and Pb1−xSnxSe and stressed InSb as examples that the DMR increases with increasing electron concentration in various manners with different numerical magnitudes which reflect the different signatures of the n-i-p-i systems and the corresponding microstructures. We have suggested an experimental method of determining the DMR in this case and the present simplified analysis is in agreement with the suggested relationship. In addition, our results find three applications in the field of quantum effect devices.
Resumo:
The present study is to investigate the interaction of strong shock heated oxygen on the surface of SiO2 thin film. The thermally excited oxygen undergoes a three-body recombination reaction on the surface of silicon dioxide film. The different oxidation states of silicon species on the surface of the shock-exposed SiO2 film are discussed based on X-ray Photoelectron Spectroscopy (XPS) results. The surface morphology of the shock wave induced damage at the cross section of SiO2 film and structure modification of these materials are analyzed using scanning electron microscopy and ion microscopy. Whether the surface reaction of oxygen on SiO2 film is catalytic or non-catalytic is discussed in this paper.
Resumo:
Interaction of shock heated test gas in the free piston driven shock tube with bulk and thin film of cubic zirconium dioxide (ZrO2) prepared by combustion method is investigated. The test samples before and after exposure to the shock wave are analyzed by X-ray diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscope (SEM). The study shows transformation of metastable cubic ZrO2 to stable monoclinic ZrO2 phase after interacting with shock heated oxygen gas due to the heterogeneous catalytic recombination surface reaction.
Resumo:
Numerical and experimental studies of a supersonic jet (Helium) inclined at 45 degrees to a oncoming Mach 2 flow have been carried out. The numerical study has been used to arrive at a geometry that could reduce an oncoming Mach 5.75 flow to Mach 2 flow and in determining the jet parameters. Experiments are carried out in the IISc. hypersonic shock tunnel HST2 at similar conditions obtained from numerical studies. Flow visualization studies carried out using Schlieren technique clearly show the presence of the bow shock in front of the jet exposed to supersonic cross flow. The jet Mach number is experimentally found to be approximate to 3. Visual observations show that the jet has penetrated up to 60% of the total height of the chamber.
Resumo:
An experimental study is presented to show the effect of the cowl location and shape on the shock interaction phenomena in the inlet region for a 2D, planar scramjet inlet model. Investigations include schlieren visualization around the cowl region and heat transfer rate measurement inside the inlet chamber.Both regular and Mach reflections are observed when the forebody ramp shock reflects from the cowl plate. Mach stem heights of 3.3 mm and 4.1 mm are measured in 18.5 mm and 22.7 mm high inlet chambers respecively. Increased heat transfer rate is measured at the same location of chamber for cowls of longer lenghs is indicating additional mass flow recovery by the inlet.
Resumo:
Forward facing circular nose cavity of 6 mm diameter in the nose portion of a generic missile shaped bodies is proposed to reduce the stagnation zone heat transfer. About 25% reduction in stagnation zone heat transfer is measured using platinum thin film sensors at Mach 8 in the IISc hypersonic shock tunnel. The presence of nose cavity does not alter the fundamental aerodynamic coefficients of the slender body. The experimental results along with the numerically predicted results is also discussed in this paper.
Resumo:
The objective of this paper is to discuss some hardware and software features of an experimental network of 8080 and 8085 microcomputers named Micronet. The interprocessor communication in the ring network is established using ring interfaces consisting of universal synchronous-asynchronous receivers-transmitters (USARTs). Another aspect considered is the interfacing of an 8080 microcomputer to a PDP-11/35 minicomputer and the development of the software for the microcomputer-minicomputer link which has been established over a serial line using the USART interface of the microcomputer and the DZ11 module of the minicomputer. This is useful in developing a host-satellite configuration of microcomputers and the minicomputer.
Resumo:
Among different methods, the transmission-line or the impedance tube method has been most popular for the experimental evaluation of the acoustical impedance of any termination. The current state of method involves extrapolation of the measured data to the reflecting surface or exact locations of the pressure maxima, both of which are known to be rather tricky. The present paper discusses a method which makes use of the positions of the pressure minima and the values of the standing-wave ratio at these points. Lippert's concept of enveloping curves has been extended. The use of Smith or Beranek charts, with their inherent inaccuracy, has been altogether avoided. The existing formulas for the impedance have been corrected. Incidentally, certain other errors in the current literature have also been brought to light.Subject Classification: 85.20.
Resumo:
The possible nonplanar distortions of the amide group in formamide, acetamide, N-methylacetamide, and N-ethylacetamide have been examined using CNDO/2 and INDO methods. The predictions from these methods are compared with the results obtained from X-ray and neutron diffraction studies on crystals of small open peptides, cyclic peptides, and amides. It is shown that the INDO results are in good agreement with observations, and that the dihedral angles N and defining the nonplanarity of the amide unit are correlated approximately by the relation N = -2, while C is small and uncorrelated with . The present study indicates that the nonplanar distortions at the nitrogen atom of the peptide unit may have to be taken into consideration, in addition to the variation in the dihedral angles (,), in working out polypeptide and protein structures.
Resumo:
The paper deals with an exact analysis of standing waves in an impedance tube with mean flow. A method is offered for the experimental evaluation of the various wave parameters. Navier–Stokes equations have been solved for evaluating the volume velocity taking into account mean flow, viscosity, etc. The engine exhaust system has been characterized as an acoustic source with an acoustic pressure and internal impedance. A method is suggested for the evaluation of these hypothetical parameters using the exhaust pipe as an impedance tube.Subject Classification: [43]85.20; [43]20.40.
Resumo:
Gabapentin (1-aminomethylcyclohexaneacetic acid, Gpn) is an achiral, conformationally constrained gamma amino acid residue. A survey of available crystal structures of Gpn peptides reveals that the torsion angles about the C-gamma-C-beta (theta(1)) and C-beta-C-alpha(theta(2)) bonds are overwhelmingly limited to gauche, gauche (g(+)g(+)/g(-)g(-)) conformations. The Gpn residue forms C-7 and C-9 hydrogen bonds in which the donor and acceptor atoms come from the flanking peptide units. In combination with alpha amino acid residues alpha gamma and gamma alpha segments can adopt C-12 hydrogen bonded structures. The conformational choices available to the Gpn residue have been probed using energy calculations, adopting a grid search strategy. Ramachandran phi-psi maps have been constructed for fixed values of theta(1) and theta(2), corresponding to the gauche and trans conformations. The sterically allowed and energetically favorable regions of conformational space have been defined and experimental observations compared. C-7 and C-9 hydrogen bonded conformational families have been identified using a grid search approach in which theta(1) and theta(2) values are varied over a range of +/- 10 degrees about ideal values at 1 degrees intervals. The theoretical analysis together with experimental observations for 59 Gpn residues from 35 crystal structures permits definition of the limited range of conformational possibilities at this gamma amino acid residue. .
Resumo:
Wear of dies is a serious problem in the forging industry. The materials used for the dies are generally expensive steel alloys and the dies require costly heat treatment and surface finishing operations. Degeneration of the die profile implies rejection of forged components and necessitates resinking or replacement of the die. Measures which reduce wear of the die can therefore aid in the reduction of production costs. The work reported here is the first phase of a study of the causes of die wear in forging production where the batch size is small and the machine employed is a light hammer. This is a problem characteristic of the medium and small scale area of the forging industry where the cost of dies is a significant proportion of the total capital investment. For the same energy input and under unlubricated conditions, die wear has been found to be sensitive to forging temperature; in cold forging the yield strength of the die material is the prime factor governing the degeneration of the die profile, whilst in hot forging the wear resistance of the die material is the main factor which determines the rate of die wear. At an intermediate temperature, such as that characteristic of warm forging, the die wear is found to be less than that in both cold and hot forging. This preliminary study therefore points to the fact that the forging temperature must be taken into account in the selection of die material. Further, the forging industry must take serious note of the warm forging process, as it not only provides good surface finish, as claimed by many authors, but also has an inherent tendency to minimize die wear.
Resumo:
A competitive scenario between Myers-Saito (MS) and Garraff-Braverman (GB) cyclization has been created in a molecule. High-level computations indicate a preference for GB over MS cyclization. The activation energies for the rate-determining steps of the GB and MS cyclizations were found to be the same (24.4 kcal/mol) at the B3LYP/6-31G* level of theory; thus, from the kinetic point of view, both reactions are feasible. However, the main biradical intermediate GB2 of the GB reaction is 6.2 kcal/mol lower in energy than the biradical MS2, which is the main intermediate of MS reaction, so GB cyclization is thermodynamically favored over MS cyclization. To verify the prediction by computational techniques, bisenediynyl sulfones 1-4 and bisenediynyl sulfoxide 17 were synthesized. Under basic conditions, these molecules isomerized to a system possessing both the ene-yne-allene and the bisallenic sulfone. The isolation of only one product, identified as the corresponding naphthalene- or benzene-fused sulfone 8-11, indicated the occurrence of GB cyclization as the sole reaction pathway. No product corresponding to the MS cyclization pathway could be isolated. Though the theoretical prediction showed a preference for the GB pathway over the MS pathway, the exclusive preference for GB over MS cyclization is very striking. Further analysis showed that the intramolecular self-quenching nature of the GB pathway may play an important role in the complete preference for this reaction. Apart from the mechanistic studies, these sulfones showed DNA cleavage activity that had an inverse relation with the reactivity order. Our findings are important for the design of artificial DNA-cleaving agents.
Resumo:
This article is concerned with a study on the energy absorption behavior of polyurethane (PU) foams such as flexible high resilience (HR), flexible viscoelastic (VE) and semi-rigid (SR) foams as a function of the overall foam density. Foam samples were prepared in the form of cubes by mixing appropriate polyol and isocyanate compounds produced by Huntsman International India Pvt. Ltd. in varying proportions leading to a range of densities for each type of foam. The cubical samples were tested under compressive load in a standard UTM. Based on the measured load-displacement behaviors, variations of peak load and energy-absorption attributes with respect to density are plotted for each type of foam and the possible existence of an optimum foam density is shown.
Resumo:
Aromatic aldehydes and aryl isocyanates do not react at room temperature. However, we have shown for the first time that in the presence of catalytic amounts of group(IV) n-butoxide, they undergo metathesis at room temperature to produce imines with the extrusion of carbon dioxide. The mechanism of action has been investigated by a study of stoichiometric reactions. The insertion of aryl isocyanates into the metal n-butoxide occurs very rapidly. Reaction of the insertion product with the aldehyde is responsible for the metathesis. Among the n-butoxides of group(IV) metals, Ti((OBu)-Bu-n)(4) (8aTi) was found to be more efficient than Zr((OBu)-Bu-n)(4) (8aZr) and Hf((OBu)-Bu-n)(4) (8aHf) in carrying out metathesis. The surprisingly large difference in the metathetic activity of these alkoxides has been probed computationally using model complexes Ti(OMe)(4) (8bTi), Zr(OMe)(4) (8bZr) and Hf(OMe)(4) (8bHf) at the B3LYP/LANL2DZ level of theory. These studies indicate that the insertion product formed by Zr and Hf are extremely stable compared to that formed by Ti. This makes subsequent reaction of Zr and Hf complexes unfavorable.