97 resultados para ECOLOGICAL CONCENTRATION
Resumo:
The superconducting transition temperatures in Bi2Ca1−xLnxSr2Cu2O8+δ, TlCa1−xLnxSr2Cu2O6+δ, and Tl0.8Ca1−xLnxBa2Cu23O6+δ (Ln=Y or rare earth) vary with composition and show a maximum at a specific value of x or δ. This observation suggests that an optimal carrier concentration is required to attain maximum Tc in such cuprates which seem to be two‐band systems
Resumo:
Polyelectrolyte complex formation involving carboxymethylcellulose and quaternized poly(vinylpyridine) as the polyions has been studied using viscosity and u.v. spectroscopic methods. The influence of charge density and molecular weight of two polycations on the composition of the complex has been investigated at two different concentrations. The charge density of the polycation is found to have different influences on the composition at different concentrations. The molecular weight of the polycation and the location of the ionic site on the polycation do not show any effect on the composition. A drastic increase in the viscosity of the polyion mixture containing quaternized poly(2-vinylpyridine) in the non-stoichiometric ratio shows evidence for the existence of the soluble polyelectrolyte complex. The results are analysed on the basis of the relative extension of the polyelectrolyte chains.
Resumo:
The paper presents the importance of the Nocturnal Boundary Layer in driving the diurnal variability of the atmospheric CO2 mixing ratio and the carbon isotope ratio at ground level from an urban station in India. Our observations are the first of their kind from this region. The atmospheric CO2 mixing ratio and the carbon isotopic ratio were measured for both the morning (05:30-07:30 IST) and afternoon time (16:00-18:00 IST) air samples at 5 m above ground level in Bangalore city, Karnataka State (12 degrees 58' N, 77 degrees 38' E, masl = 920 m) for a 10 day period during the winter of 2008. We observed a change of similar to 7% the in CO2 mixing ratio between the morning and afternoon time air samples. A stable isotope analysis of CO2 from morning samples showed a depletion in the carbon isotope ratio by similar to 2 parts per thousand compared to the afternoon samples. Along with the ground-based measurement of air samples, data of radiosonde measurements were also obtained from the Indian Meteorological Department to identify the vertical atmospheric structure at different time in a day. We proposed the presence or absence of the NBL as a controlling factor for the observed variability in the mixing ratio as well as its isotopic composition. Here we used the Keeling model approach to find out the carbon isotope ratio for the local sources. The local sources have further been characterized as anthropogenic and biological respiration (in %) using a two-component mixing model. We also used a vertical mixing model based on the concept of the mixing of isotopically depleted (carbon isotope) ``polluted air'' (PA) with isotopically enriched ``free atmospheric air'' (FA) above. Using this modeling approach, the contribution of FA at ground level is being estimated for both the morning and afternoon time air samples.
Resumo:
Films of (PEG)(x)NH4ClO4 (x = 5 to 1000) were prepared and characterized. The physical properties are observed to be a sensitive function of concentration. Hygroscopicity increases as salt content increases. Conductivity peaks (sigma = 2.7 x 10(-6) S/cm) at x = 46. The H-1 NMR line width has a minimum at x = 46, while that of Cl-35 monotonically increases with salt concentration, indicating that the complex is essentially a protonic conductor.
Resumo:
We combine multiple scattering and renormalization group methods to calculate the leading order dimensionless virial coefficient k(s) for the friction coefficient of dilute polymer solutions under conditions where the osmotic second virial coefficient vanishes (i.e., at the theta point T-theta). Our calculations are formulated in terms of coupled kinetic equations for the polymer and solvent, in which the polymers are modeled as continuous chains whose configurations evolve under the action of random forces in, the velocity field of the solvent. To lowest order in epsilon=4-d, we find that k(s) = 1.06. This result compares satisfactorily with existing experimental estimates of k(s), which are in the range 0.7-0.8. It is also in good agreement with other theoretical results on chains and suspensions at T-theta. Our calculated k(s) is also found to be identical to the leading order virial coefficient of the tracer friction coefficient at the theta point. We discuss possible reasons for the difficulties encountered when attempting to evaluate k(s) by extrapolating prior renormalization group calculations from semidilute concentrations to the infinitely dilute limit. (C) 1996 American Institute of Physics.
Resumo:
The higher substrate and chiral auxiliary concentration is a pre-requisite to obtain efficient separation of H-1 NMR signals of enantiomers. The higher concentration of chiral lanthanide shift reagents provides broadened spectral lines resulting in a severe loss of resolution between the enantiomer resonances. In order to circumvent such difficulties, herein we present the application and the usefulness of a selective F-1 decoupled correlation (COSY) experiment which yields proton decoupled proton spectra in the indirect dimension. The potentiality of the experiment is demonstrated on several chiral compounds possessing different functional groups, employing either a lanthanide shift reagent or a solvating reagent as chiral auxiliaries. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Earlier work has reported the existence of a diffusion anomaly in porous solids at dilute sorbate concentrations. In this work we have carried out molecular dynamics simulations at higher sorbate concetrations. Results indicate the persistence of a diffusion anomaly even at significantly higher sorbate concentrations, which means that this anomaly can be used for separation of mixtures under conditions prevailing in industries.
Resumo:
A three-species food chain model is studied analytically as well as numerically. Integrability of the model is studied using Painleve analysis while chaotic behavior is studied using numerical techniques, such as calculation of Lyapunov exponents, plotting the bifurcation diagram and phase plots. We correct and critically comment on the wrong results reported recently on this ecological model, in a paper by Rai [1995].
Resumo:
This paper analyses environmental and socio-economic barriers for plantation activities on local and regional level and investigates the potential for carbon finance to stimulate the increased rates of forest plantation on wasteland, i.e., degraded lands, in southern India. Building on multidisciplinary field work and results from the model GCOMAP, the aim is to (1) identify and characterize the barriers to plantation activities in four agro-ecological zones in the state of Karnataka and (2) investigate what would be required to overcome these barriers and enhance the plantation rate and productivity. The results show that a rehabilitation of the wasteland based on plantation activities is not only possible but also anticipated by the local population and would lead to positive environmental and socio-economic effects at a local level. However, in many cases, the establishment of plantation activities is hindered by a lack of financial resources, low land productivity and water scarcity. Based on the model used and the results from the field work, it can be concluded that certified emission reductions such as carbon credits or other compensatory systems may help to overcome the financial barrier; however, the price needs to be significantly increased if these measures are to have any large-scale impact.
Resumo:
We find that at a mole fraction 0.05 of DMSO (x(DMSO) = 0.05) in aqueous solution, a linear hydrocarbon chain of intermediate length (n = 30-40) adopts the most stable collapsed conformation. In pure water, the same chain exhibits an intermittent oscillation between the collapsed and the extended coiled conformations. Even when the mole fraction of DMSO in the bulk is 0.05, the concentration of the same in the first hydration layer around the hydrocarbon of chain length 30 (n = 30) is as large as 17%. Formation of such hydrophobic environment around the hydrocarbon chain may be viewed as the reason for the collapsed conformation gaining additional stability. We find a second anomalous behavior to emerge near x(DMSO) = 0.15, due to a chain-like aggregation of the methyl groups of DMSO in water that lowers the relative concentration of the DMSO molecules in the hydration layer. We further find that as the concentration of DMSO is gradually increased, it progressively attains the extended coiled structure as the stable conformation. Although Flory-Huggins theory (for binary mixture solvent) fails to predict the anomaly at x(DMSO) = 0.05, it seems to capture the essence of the anomaly at 0.15.
Resumo:
Two vitellins, VtA and VtB, were purified from the eggs of Dysdercus koenigii by gel filtration and ion exchange chromatography. VtA and VtB have molecular weights of 290 and 260 kDa, respectively. Both Vts are glycolipoproteinaceous in nature. VtA is composed of three polypeptides of M-r 116, 92 and 62 kDa while VtB contained an additional subunit of M-r 40 kDa. All subunits except the 116-kDa subunit are glycolipopolypeptides. Polyclonal antibody raised against VtA (anti-VtA antibody) cross-reacted with VtB and also with vitellogenic haemolymph and ovaries and pre-vitellogenic fat bodies, but not with haemolymph from either adult male, fifth instar female, or pre-vitellogenic females demonstrating sex and stage specificity of the Vts. Immunoblots in the presence of anti-VtA revealed two proteins (of 290 and 260 kDa) in both vitellogenic haemolymph and pre-vitellogenic fat bodies that are recognised as D. koenigii Vgs. In newly emerged females, Vgs appeared on day 1 in fat bodies and on day 3 in haemolymph and ovaries. Vg concentration was maximum on day 2 in fat body, day 4 in haemolymph and day 7 in ovary. Although the biochemical and temporal characteristics of these proteins show similarity to some hemipterans, they are strikingly dissimilar with those of a very closely related species. (C) 1999 Elsevier Science Inc. All rights reserved.
Resumo:
The preovulatory follicle in response to gonadotropin surge undergoes dramatic biochemical, and morphological changes orchestrated by expression changes in hundreds of genes. Employing well characterized bovine preovulatory follicle model, granulosa cells (GCs) and follicle wall were collected from the preovulatory follicle before, 1, 10 and 22 h post peak LH surge. Microarray analysis performed on GCs revealed that 450 and 111 genes were differentially expressed at 1 and 22 h post peak LH surge, respectively. For validation, qPCR and immunocytochemistry analyses were carried out for some of the differentially expressed genes. Expression analysis of many of these genes showed distinct expression patterns in GCs and the follicle wall. To study molecular functions and genetic networks, microarray data was analyzed using Ingenuity Pathway Analysis which revealed majority of the differentially expressed genes to cluster within processes like steroidogenesis, cell survival and cell differentiation. In the ovarian follicle, IGF-I is established to be an important regulator of the above mentioned molecular functions. Thus, further experiments were conducted to verify the effects of increased intrafollicular IGF-I levels on the expression of genes associated with the above mentioned processes. For this purpose, buffalo cows were administered with exogenous bGH to transiently increase circulating and intrafollicular concentrations of IGF-I. The results indicated that increased intrafollicular concentrations of IGF-I caused changes in expression of genes associated with steroidogenesis (StAR, SRF) and apoptosis (BCL-2, FKHR, PAWR). These results taken together suggest that onset of gonadotropin surge triggers activation of various biological pathways and that the effects of growth factors and peptides on gonadotropin actions could be examined during preovulatory follicle development.
Resumo:
Stress induced premature senescence (SIPS) in mammalian cells is an accelerated ageing response and experimentally obtained on treatment of cells with high concentrations of H(2)O(2), albeit at sub-lethal doses, because H(2)O(2) gets depleted by abundant cellular catalase. In the present study diperoxovanadate (DPV) was used as it is known to be stable at physiological pH, to be catalase-resistant and to substitute for H(2)O(2) in its activities at concentrations order of magnitudes lower. On treating NIH3T3 cells with DPV, SIPS-like morphology was observed along with an immediate response of rounding of the cells by disruption of actin cytoskeleton and transient G2/M arrest. DPV could bring about growth arrest and senescence associated features at 25 mu M dose, which were not seen with similar doses of either H(2)O(2) or vanadate. A minimal dose of 150 mu M of H(2)O(2) was required to induce similar affects as 25 mu M DPV. Increase in senescent associated markers such as p21, HMGA2 and PAI-1 was more prominent in DPV treated cells compared to similar dose of H(2)O(2). DPV-treated cells showed marked relocalization of Cyclin D1 from nucleus to cytoplasm. These results indicate that DPV, stable inorganic peroxide, is more efficient in inducing SIPS at lower concentrations compared to H(2)O(2). (C) 2011 Elsevier Ireland Ltd. All rights reserved.