339 resultados para Dynamic variation
Resumo:
Chemical composition of rainwater changes from sea to inland under the influence of several major factors - topographic location of area, its distance from sea, annual rainfall. A model is developed here to quantify the variation in precipitation chemistry under the influence of inland distance and rainfall amount. Various sites in India categorized as 'urban', 'suburban' and 'rural' have been considered for model development. pH, HCO3, NO3 and Mg do not change much from coast to inland while, SO4 and Ca change is subjected to local emissions. Cl and Na originate solely from sea salinity and are the chemistry parameters in the model. Non-linear multiple regressions performed for the various categories revealed that both rainfall amount and precipitation chemistry obeyed a power law reduction with distance from sea. Cl and Na decrease rapidly for the first 100 km distance from sea, then decrease marginally for the next 100 km, and later stabilize. Regression parameters estimated for different cases were found to be consistent (R-2 similar to 0.8). Variation in one of the parameters accounted for urbanization. Model was validated using data points from the southern peninsular region of the country. Estimates are found to be within 99.9% confidence interval. Finally, this relationship between the three parameters - rainfall amount, coastline distance, and concentration (in terms of Cl and Na) was validated with experiments conducted in a small experimental watershed in the south-west India. Chemistry estimated using the model was in good correlation with observed values with a relative error of similar to 5%. Monthly variation in the chemistry is predicted from a downscaling model and then compared with the observed data. Hence, the model developed for rain chemistry is useful in estimating the concentrations at different spatio-temporal scales and is especially applicable for south-west region of India. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Among the multitude of test specimen geometries used for dynamic fiacture toughness evaluation, the most widely uscd specimen is lhc Chavpy specimen due its simple geomclry and availability of testing machines. The standard Chatpy specimen dimensions may llOl always give plane st~ain condilions and hence, it may be necessary Io coilduct lcs/s using specimens of dillEvcnt thicknesses to establish the plane strain K~a. An axisymmct/ic specimen, on the otlaev hand would always give flow constraints l~n a nominal specimen thickness i~rcspcctive of the test matctial. The notched disk specimen pVOl)oscd by Bcrn:ud ctal. [1] for static and dynamic initiation toughness measurement although p~ovicles plain-strain conditions, the crack plopagatcs at an angle to the direction of applied load. This makes inteq~retation of the test results difficult us it ~Ccluivcs ~actial slices to be cut fiom the fractured specimen to ascertain the angle o1 crack growth and a linite element model l~)r tl);t{ pa~ticulat ctack o~icntalion.
Resumo:
An experimental investigation into the dynamic strain ageing (DSA) of a wrought Ni-base superalloy 720Li was conducted. Characteristics of jerky, flow have been studied at intermediate temperatures of 350, 400 and 450 degrees C at strain-rates between 10(-3) and 10(-5) s(-1). Serrations of Type C are predominant within the temperature/strain-rate range explored. The major characteristics of the serrations-i.e. (a) critical plastic strain for onset of serrations, epsilon(c); (b) average stress decrement, Delta sigma(avg); and (c) strain increment between serrations. Delta epsilon(BS)-have been examined at selected temperatures and strain-rates. Negative strain-rate sensitivity was observed in the DSA regime. However. temperature did not influence tensile properties such as yield strength, ultimate strength. elongation, reduction in area, and work hardening rate or fracture features in DSA regime. Analysis of the results Suggests that locking of the mobile dislocations by substitutional alloying elements is responsible for the DSA in alloy 720Li.
Resumo:
This paper presents a methodology for dynamic analysis of short term small signal voltage instability in a multi-machine power system. The formulation of the problem is done by decoupling the angle instability from the voltage instability. The method is based on the incremental reactive current flow network (IRCFN), where the incremental reactive current injection at each bus is related to the incremental voltage magnitude at all the buses. Small signal stability using the eigenvalue analysis is illustrated utilizing a single-machine load bus (SMLB) and three-machine system examples. The role of a static var compensator (SVC) at the load bus is also examined.
Resumo:
This paper presents the modeling and analysis of a voltage source converter (VSC) based back-to-back (BTB) HVDC link. The case study considers the response to changes in the active and reactive power and disturbance caused by single line to ground (SLG) fault. The controllers at each terminal are designed to inject a variable (magnitude and phase angle) sinusoidal, balanced set of voltages to regulate/control the active and reactive power. It is also possible to regulate the converter bus (AC) voltage by controlling the injected reactive power. The analysis is carried out using both d-q model (neglecting the harmonics in the output voltages of VSC) and three phase detailed model of VSC. While the eigenvalue analysis and controller design is based on the d-q model, the transient simulation considers both models.
Resumo:
Despite great advances in very large scale integrated-circuit design and manufacturing, performance of even the best available high-speed, high-resolution analog-to-digital converter (ADC) is known to deteriorate while acquiring fast-rising, high-frequency, and nonrepetitive waveforms. Waveform digitizers (ADCs) used in high-voltage impulse recordings and measurements are invariably subjected to such waveforms. Errors resulting from a lowered ADC performance can be unacceptably high, especially when higher accuracies have to be achieved (e.g., when part of a reference measuring system). Static and dynamic nonlinearities (estimated independently) are vital indices for evaluating performance and suitability of ADCs to be used in such environments. Typically, the estimation of static nonlinearity involves 10-12 h of time or more (for a 12-b ADC) and the acquisition of millions of samples at high input frequencies for dynamic characterization. ADCs with even higher resolution and faster sampling speeds will soon become available. So, there is a need to reduce testing time for evaluating these parameters. This paper proposes a novel and time-efficient method for the simultaneous estimation of static and dynamic nonlinearity from a single test. This is achieved by conceiving a test signal, comprised of a high-frequency sinusoid (which addresses dynamic assessment) modulated by a low-frequency ramp (relevant to the static part). Details of implementation and results on two digitizers are presented and compared with nonlinearities determined by the existing standardized approaches. Good agreement in results and time savings achievable indicates its suitability.
Resumo:
We describe an X-band ESR cavity for angular variation studies on single crystals at room temperature. The cavity was found to have a high Q over wide rotation angles. Review of Scientific Instruments is copyrighted by The American Institute of Physics.
Resumo:
Timoshenko's shear deformation theory is widely used for the dynamical analysis of shear-flexible beams. This paper presents a comparative study of the shear deformation theory with a higher order model, of which Timoshenko's shear deformation model is a special case. Results indicate that while Timoshenko's shear deformation theory gives reasonably accurate information regarding the set of bending natural frequencies, there are considerable discrepancies in the information it gives regarding the mode shapes and dynamic response, and so there is a need to consider higher order models for the dynamical analysis of flexure of beams.
Resumo:
Despite great advances in very large scale integrated-circuit design and manufacturing, performance of even the best available high-speed, high-resolution analog-to-digital converter (ADC) is known to deteriorate while acquiring fast-rising, high-frequency, and nonrepetitive waveforms. Waveform digitizers (ADCs) used in high-voltage impulse recordings and measurements are invariably subjected to such waveforms. Errors resulting from a lowered ADC performance can be unacceptably high, especially when higher accuracies have to be achieved (e.g., when part of a reference measuring system). Static and dynamic nonlinearities (estimated independently) are vital indices for evaluating performance and suitability of ADCs to be used in such environments. Typically, the estimation of static nonlinearity involves 10-12 h of time or more (for a 12-b ADC) and the acquisition of millions of samples at high input frequencies for dynamic characterization. ADCs with even higher resolution and faster sampling speeds will soon become available. So, there is a need to reduce testing time for evaluating these parameters. This paper proposes a novel and time-efficient method for the simultaneous estimation of static and dynamic nonlinearity from a single test. This is achieved by conceiving a test signal, comprised of a high-frequency sinusoid (which addresses dynamic assessment) modulated by a low-frequency ramp (relevant to the static part). Details of implementation and results on two digitizers are presented and compared with nonlinearities determined by the existing standardized approaches. Good agreement in results and time savings achievable indicates its suitability.
Resumo:
A new method of modeling material behavior which accounts for the dynamic metallurgical processes occurring during hot deformation is presented. The approach in this method is to consider the workpiece as a dissipator of power in the total processing system and to evaluate the dissipated power co-contentJ = ∫o σ ε ⋅dσ from the constitutive equation relating the strain rate (ε) to the flow stress (σ). The optimum processing conditions of temperature and strain rate are those corresponding to the maximum or peak inJ. It is shown thatJ is related to the strain-rate sensitivity (m) of the material and reaches a maximum value(J max) whenm = 1. The efficiency of the power dissipation(J/J max) through metallurgical processes is shown to be an index of the dynamic behavior of the material and is useful in obtaining a unique combination of temperature and strain rate for processing and also in delineating the regions of internal fracture. In this method of modeling, noa priori knowledge or evaluation of the atomistic mechanisms is required, and the method is effective even when more than one dissipation process occurs, which is particularly advantageous in the hot processing of commercial alloys having complex microstructures. This method has been applied to modeling of the behavior of Ti-6242 during hot forging. The behavior of α+ β andβ preform microstructures has been exam-ined, and the results show that the optimum condition for hot forging of these preforms is obtained at 927 °C (1200 K) and a strain rate of 1CT•3 s•1. Variations in the efficiency of dissipation with temperature and strain rate are correlated with the dynamic microstructural changes occurring in the material.
Effect of Temperature Variation on Sister Chromatid Exchange Frequency in Cultured Human Lymphocytes
Resumo:
The effect of temperature variation on sister chromatid exchange (SCE) frequencies in human lymphocytes was studied. An increase as well as decrease in incubation temperature of cells leads to a higher frequency of sister chromatid exchanges than in cultures grown at 37°C. In addition, it was observed that mitotic: index and cell cycle duration were affected by low temperature.
Resumo:
A graphical method is presented for Hall data analysis, including the temperature variation of activation energy due to screening. This method removes the discrepancies noted in the analysis of recently reported Hall data on Si(In).
Resumo:
The variable temperature 1H and 13C NMR behaviour of two trisubstituted thioureas, namely N,N-diethyl N'-(2-thiazolyl) thiourea and N,N-diethyl N'-(3-pyridyl)thiourea has been investigated. The barrier to rotation of the diethylamino group has been obtained.
Resumo:
A fuzzy logic based centralized control algorithm for irrigation canals is presented. Purpose of the algorithm is to control downstream discharge and water level of pools in the canal, by adjusting discharge release from the upstream end and gates settings. The algorithm is based on the dynamic wave model (Saint-Venant equations) inversion in space, wherein the momentum equation is replaced by a fuzzy rule based model, while retaining the continuity equation in its complete form. The fuzzy rule based model is developed on fuzzification of a new mathematical model for wave velocity, the derivational details of which are given. The advantages of the fuzzy control algorithm, over other conventional control algorithms, are described. It is transparent and intuitive, and no linearizations of the governing equations are involved. Timing of the algorithm and method of computation are explained. It is shown that the tuning is easy and the computations are straightforward. The algorithm provides stable, realistic and robust outputs. The disadvantage of the algorithm is reduced precision in its outputs due to the approximation inherent in the fuzzy logic. Feed back control logic is adopted to eliminate error caused by the system disturbances as well as error caused by the reduced precision in the outputs. The algorithm is tested by applying it to water level control problem in a fictitious canal with a single pool and also in a real canal with a series of pools. It is found that results obtained from the algorithm are comparable to those obtained from conventional control algorithms.
Resumo:
A fuzzy dynamic flood routing model (FDFRM) for natural channels is presented, wherein the flood wave can be approximated to a monoclinal wave. This study is based on modification of an earlier published work by the same authors, where the nature of the wave was of gravity type. Momentum equation of the dynamic wave model is replaced by a fuzzy rule based model, while retaining the continuity equation in its complete form. Hence, the FDFRM gets rid of the assumptions associated with the momentum equation. Also, it overcomes the necessity of calculating friction slope (S-f) in flood routing and hence the associated uncertainties are eliminated. The fuzzy rule based model is developed on an equation for wave velocity, which is obtained in terms of discontinuities in the gradient of flow parameters. The channel reach is divided into a number of approximately uniform sub-reaches. Training set required for development of the fuzzy rule based model for each sub-reach is obtained from discharge-area relationship at its mean section. For highly heterogeneous sub-reaches, optimized fuzzy rule based models are obtained by means of a neuro-fuzzy algorithm. For demonstration, the FDFRM is applied to flood routing problems in a fictitious channel with single uniform reach, in a fictitious channel with two uniform sub-reaches and also in a natural channel with a number of approximately uniform sub-reaches. It is observed that in cases of the fictitious channels, the FDFRM outputs match well with those of an implicit numerical model (INM), which solves the dynamic wave equations using an implicit numerical scheme. For the natural channel, the FDFRM Outputs are comparable to those of the HEC-RAS model.