35 resultados para Dynamic Models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Task-parallel languages are increasingly popular. Many of them provide expressive mechanisms for intertask synchronization. For example, OpenMP 4.0 will integrate data-driven execution semantics derived from the StarSs research language. Compared to the more restrictive data-parallel and fork-join concurrency models, the advanced features being introduced into task-parallelmodels in turn enable improved scalability through load balancing, memory latency hiding, mitigation of the pressure on memory bandwidth, and, as a side effect, reduced power consumption. In this article, we develop a systematic approach to compile loop nests into concurrent, dynamically constructed graphs of dependent tasks. We propose a simple and effective heuristic that selects the most profitable parallelization idiom for every dependence type and communication pattern. This heuristic enables the extraction of interband parallelism (cross-barrier parallelism) in a number of numerical computations that range from linear algebra to structured grids and image processing. The proposed static analysis and code generation alleviates the burden of a full-blown dependence resolver to track the readiness of tasks at runtime. We evaluate our approach and algorithms in the PPCG compiler, targeting OpenStream, a representative dataflow task-parallel language with explicit intertask dependences and a lightweight runtime. Experimental results demonstrate the effectiveness of the approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cybernetic modeling framework provides an interesting approach to model the regulatory phenomena occurring in microorganisms. In the present work, we adopt a constraints based approach to analyze the nonlinear behavior of the extended equations of the cybernetic model. We first show that the cybernetic model exhibits linear growth behavior under the constraint of no resource allocation for the induction of the key enzyme. We then quantify the maximum achievable specific growth rate of microorganisms on mixtures of substitutable substrates under various kinds of regulation and show its use in gaining an understanding of the regulatory strategies of microorganisms. Finally, we show that Saccharomyces cerevisiae exhibits suboptimal dynamic growth with a long diauxic lag phase when growing on a mixture of glucose and galactose and discuss on its potential to achieve optimal growth with a significantly reduced diauxic lag period. The analysis carried out in the present study illustrates the utility of adopting a constraints based approach to understand the dynamic growth strategies of microorganisms. (C) 2015 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inverted pendulum is a popular model for describing bipedal dynamic walking. The operating point of the walker can be specified by the combination of initial mid-stance velocity (v(0)) and step angle (phi(m)) chosen for a given walk. In this paper, using basic mechanics, a framework of physical constraints that limit the choice of operating points is proposed. The constraint lines thus obtained delimit the allowable region of operation of the walker in the v(0)-phi(m) plane. A given average forward velocity v(x,) (avg) can be achieved by several combinations of v(0) and phi(m). Only one of these combinations results in the minimum mechanical power consumption and can be considered the optimum operating point for the given v(x, avg). This paper proposes a method for obtaining this optimal operating point based on tangency of the power and velocity contours. Putting together all such operating points for various v(x, avg,) a family of optimum operating points, called the optimal locus, is obtained. For the energy loss and internal energy models chosen, the optimal locus obtained has a largely constant step angle with increasing speed but tapers off at non-dimensional speeds close to unity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses dynamic modeling of non-isolated DC-DC converters (buck, boost and buck-boost) under continuous and discontinuous modes of operation. Three types of models are presented for each converter, namely, switching model, average model and harmonic model. These models include significant non-idealities of the converters. The switching model gives the instantaneous currents and voltages of the converter. The average model provides the ripple-free currents and voltages, averaged over a switching cycle. The harmonic model gives the peak to peak values of ripple in currents and voltages. The validity of all these models is established by comparing the simulation results with the experimental results from laboratory prototypes, at different steady state and transient conditions. Simulation based on a combination of average and harmonic models is shown to provide all relevant information as obtained from the switching model, while consuming less computation time than the latter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the advances in technology, seismological theory, and data acquisition, a number of high-resolution seismic tomography models have been published. However, discrepancies between tomography models often arise from different theoretical treatments of seismic wave propagation, different inversion strategies, and different data sets. Using a fixed velocity-to-density scaling and a fixed radial viscosity profile, we compute global mantle flow models associated with the different tomography models and test the impact of these for explaining surface geophysical observations (geoid, dynamic topography, stress, and strain rates). We use the joint modeling of lithosphere and mantle dynamics approach of Ghosh and Holt (2012) to compute the full lithosphere stresses, except that we use HC for the mantle circulation model, which accounts for the primary flow-coupling features associated with density-driven mantle flow. Our results show that the seismic tomography models of S40RTS and SAW642AN provide a better match with surface observables on a global scale than other models tested. Both of these tomography models have important similarities, including upwellings located in Pacific, Eastern Africa, Iceland, and mid-ocean ridges in the Atlantic and Indian Ocean and downwelling flows mainly located beneath the Andes, the Middle East, and central and Southeast Asia.