41 resultados para Document segmentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a segmentation algorithm to extract foreground object motion in a moving camera scenario without any preprocessing step such as tracking selected features, video alignment, or foreground segmentation. By viewing it as a curve fitting problem on advected particle trajectories, we use RANSAC to find the polynomial that best fits the camera motion and identify all trajectories that correspond to the camera motion. The remaining trajectories are those due to the foreground motion. By using the superposition principle, we subtract the motion due to camera from foreground trajectories and obtain the true object-induced trajectories. We show that our method performs on par with state-of-the-art technique, with an execution time speed-up of 10x-40x. We compare the results on real-world datasets such as UCF-ARG, UCF Sports and Liris-HARL. We further show that it can be used toper-form video alignment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a novel approach that makes use of topic models based on Latent Dirichlet allocation(LDA) for generating single document summaries. Our approach is distinguished from other LDA based approaches in that we identify the summary topics which best describe a given document and only extract sentences from those paragraphs within the document which are highly correlated given the summary topics. This ensures that our summaries always highlight the crux of the document without paying any attention to the grammar and the structure of the documents. Finally, we evaluate our summaries on the DUC 2002 Single document summarization data corpus using ROUGE measures. Our summaries had higher ROUGE values and better semantic similarity with the documents than the DUC summaries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classification of a large document collection involves dealing with a huge feature space where each distinct word is a feature. In such an environment, classification is a costly task both in terms of running time and computing resources. Further it will not guarantee optimal results because it is likely to overfit by considering every feature for classification. In such a context, feature selection is inevitable. This work analyses the feature selection methods, explores the relations among them and attempts to find a minimal subset of features which are discriminative for document classification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flood is one of the detrimental hydro-meteorological threats to mankind. This compels very efficient flood assessment models. In this paper, we propose remote sensing based flood assessment using Synthetic Aperture Radar (SAR) image because of its imperviousness to unfavourable weather conditions. However, they suffer from the speckle noise. Hence, the processing of SAR image is applied in two stages: speckle removal filters and image segmentation methods for flood mapping. The speckle noise has been reduced with the help of Lee, Frost and Gamma MAP filters. A performance comparison of these speckle removal filters is presented. From the results obtained, we deduce that the Gamma MAP is reliable. The selected Gamma MAP filtered image is segmented using Gray Level Co-occurrence Matrix (GLCM) and Mean Shift Segmentation (MSS). The GLCM is a texture analysis method that separates the image pixels into water and non-water groups based on their spectral feature whereas MSS is a gradient ascent method, here segmentation is carried out using spectral and spatial information. As test case, Kosi river flood is considered in our study. From the segmentation result of both these methods are comprehensively analysed and concluded that the MSS is efficient for flood mapping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Latent variable methods, such as PLCA (Probabilistic Latent Component Analysis) have been successfully used for analysis of non-negative signal representations. In this paper, we formulate PLCS (Probabilistic Latent Component Segmentation), which models each time frame of a spectrogram as a spectral distribution. Given the signal spectrogram, the segmentation boundaries are estimated using a maximum-likelihood approach. For an efficient solution, the algorithm imposes a hard constraint that each segment is modelled by a single latent component. The hard constraint facilitates the solution of ML boundary estimation using dynamic programming. The PLCS framework does not impose a parametric assumption unlike earlier ML segmentation techniques. PLCS can be naturally extended to model coarticulation between successive phones. Experiments on the TIMIT corpus show that the proposed technique is promising compared to most state of the art speech segmentation algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results from interface shear tests on sand-geosynthetic interfaces are examined in light of surface roughness of the interacting geosynthetic material. Three different types of interface shear tests carried out in the frame of direct shear-test setup are compared to understand the effect of parameters like box fixity and symmetry on the interface shear characteristics. Formation of shear bands close to the interface is visualized in the tests and the bands are analyzed using image-segmentation techniques in MATLAB. A woven geotextile with moderate roughness and a geomembrane with minimal roughness are used in the tests. The effect of surface roughness of the geosynthetic material on the formation of shear bands, movement of sand particles, and interface shear parameters are studied and compared through visual observations, image analyses, and image-segmentation techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we have explored the prospect of segmenting crowd flow in H. 264 compressed videos by merely using motion vectors. The motion vectors are extracted by partially decoding the corresponding video sequence in the H. 264 compressed domain. The region of interest ie., crowd flow region is extracted and the motion vectors that spans the region of interest is preprocessed and a collective representation of the motion vectors for the entire video is obtained. The obtained motion vectors for the corresponding video is then clustered by using EM algorithm. Finally, the clusters which converges to a single flow are merged together based on the bhattacharya distance measure between the histogram of the of the orientation of the motion vectors at the boundaries of the clusters. We had implemented our proposed approach on the complex crowd flow dataset provided by 1] and compared our results by using Jaccard measure. Since we are performing crowd flow segmentation in the compressed domain using only motion vectors, our proposed approach performs much faster compared to other pixel domain counterparts still retaining better accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a technique for video object segmentation using patch seams across frames. Typically, seams, which are connected paths of low energy, are utilised for retargeting, where the primary aim is to reduce the image size while preserving the salient image contents. Here, we adapt the formulation of seams for temporal label propagation. The energy function associated with the proposed video seams provides temporal linking of patches across frames, to accurately segment the object. The proposed energy function takes into account the similarity of patches along the seam, temporal consistency of motion and spatial coherency of seams. Label propagation is achieved with high fidelity in the critical boundary regions, utilising the proposed patch seams. To achieve this without additional overheads, we curtail the error propagation by formulating boundary regions as rough-sets. The proposed approach out-perform state-of-the-art supervised and unsupervised algorithms, on benchmark datasets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The broader goal of the research being described here is to automatically acquire diagnostic knowledge from documents in the domain of manual and mechanical assembly of aircraft structures. These documents are treated as a discourse used by experts to communicate with others. It therefore becomes possible to use discourse analysis to enable machine understanding of the text. The research challenge addressed in the paper is to identify documents or sections of documents that are potential sources of knowledge. In a subsequent step, domain knowledge will be extracted from these segments. The segmentation task requires partitioning the document into relevant segments and understanding the context of each segment. In discourse analysis, the division of a discourse into various segments is achieved through certain indicative clauses called cue phrases that indicate changes in the discourse context. However, in formal documents such language may not be used. Hence the use of a domain specific ontology and an assembly process model is proposed to segregate chunks of the text based on a local context. Elements of the ontology/model, and their related terms serve as indicators of current context for a segment and changes in context between segments. Local contexts are aggregated for increasingly larger segments to identify if the document (or portions of it) pertains to the topic of interest, namely, assembly. Knowledge acquired through such processes enables acquisition and reuse of knowledge during any part of the lifecycle of a product.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In optical character recognition of very old books, the recognition accuracy drops mainly due to the merging or breaking of characters. In this paper, we propose the first algorithm to segment merged Kannada characters by using a hypothesis to select the positions to be cut. This method searches for the best possible positions to segment, by taking into account the support vector machine classifier's recognition score and the validity of the aspect ratio (width to height ratio) of the segments between every pair of cut positions. The hypothesis to select the cut position is based on the fact that a concave surface exists above and below the touching portion. These concave surfaces are noted down by tracing the valleys in the top contour of the image and similarly doing it for the image rotated upside-down. The cut positions are then derived as closely matching valleys of the original and the rotated images. Our proposed segmentation algorithm works well for different font styles, shapes and sizes better than the existing vertical projection profile based segmentation. The proposed algorithm has been tested on 1125 different word images, each containing multiple merged characters, from an old Kannada book and 89.6% correct segmentation is achieved and the character recognition accuracy of merged words is 91.2%. A few points of merge are still missed due to the absence of a matched valley due to the specific shapes of the particular characters meeting at the merges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crowd flow segmentation is an important step in many video surveillance tasks. In this work, we propose an algorithm for segmenting flows in H.264 compressed videos in a completely unsupervised manner. Our algorithm works on motion vectors which can be obtained by partially decoding the compressed video without extracting any additional features. Our approach is based on modelling the motion vector field as a Conditional Random Field (CRF) and obtaining oriented motion segments by finding the optimal labelling which minimises the global energy of CRF. These oriented motion segments are recursively merged based on gradient across their boundaries to obtain the final flow segments. This work in compressed domain can be easily extended to pixel domain by substituting motion vectors with motion based features like optical flow. The proposed algorithm is experimentally evaluated on a standard crowd flow dataset and its superior performance in both accuracy and computational time are demonstrated through quantitative results.