157 resultados para Differential equations, Nonlinear -- Numerical solutions -- Computer programs


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on the investigations of laminar free convection heat transfer from vertical cylinders and wires whose surface temperature varies along the height according to the relation TW - T∞ = Nxn. The set of boundary layer partial differential equations and the boundary conditions are transformed to a more amenable form and solved by the process of successive substitution. Numerical solutions of the first approximated equations (two-point nonlinear boundary value type of ordinary differential equations) bring about the major contribution to the problem (about 95%), as seen from the solutions of higher approximations. The results reduce to those for the isothermal case when n=0. Criteria for classifying the cylinders into three broad categories, viz., short cylinders, long cylinders and wires, have been developed. For all values of n the same criteria hold. Heat transfer correlations obtained for short cylinders (which coincide with those of flat plates) are checked with those available in the literature. Heat transfer and fluid flow correlations are developed for all the regimes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dissolution, accompanied by chemical reaction, of monodisperse solid particles has been analysed. The resulting model, which accounts for the variation of mass transfer coefficient with the size of the dissolving particles, yields an approximate analytical form of a kinetic function. Rigorous numerical and approximate analytical solutions have been obtained for the governing system of nonlinear ordinary differential equations. The transient nature of the dissolution process as well as the accuracy of the analytical solution is brought out by the rigorous numerical solution. The analytical solution is fairly accurate for the major part of the range of operational times encountered in practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A class of self-propagating linear and nonlinear travelling wave solutions for compressible rotating fluid is studied using both numerical and analytical techiques. It is shown that, in general, a three dimensional linear wave is not periodic. However, for some range of wave numbers depending on rotation, horizontally propagating waves are periodic. When the rotation ohgr is equal to $$\sqrt {(\gamma - 1)/(4\gamma )}$$ , all horizontal waves are periodic. Here, gamma is the ratio of specific heats. The analytical study is based on phase space analysis. It reveals that the quasi-simple waves are periodic only in some plane, even when the propagation is horizontal, in contrast to the case of non-rotating flows for which there is a single parameter family of periodic solutions provided the waves propagate horizontally. A classification of the singular points of the governing differential equations for quasi-simple waves is also appended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our investigations in this paper are centred around the mathematical analysis of a ldquomodal waverdquo problem. We have considered the axisymmetric flow of an inviscid liquid in a thinwalled viscoelastic tube under certain simplifying assumptions. We have first derived the propagation space equations in the long wave limit and also given a general procedure to derive these equations for arbitrary wave length, when the flow is irrotational. We have used the method of operators of multiple scales to derive the nonlinear Schrödinger equation governing the modulation of periodic waves and we have elaborated on the ldquolong modulated wavesrdquo and the ldquomodulated long wavesrdquo. We have also examined the existence and stability of Stokes waves in this system. This is followed by a discussion of the progressive wave solutions of the long wave equations. One of the most important results of our paper is that the propagation space equations are no longer partial differential equations but they are in terms of pseudo-differential operators.Die vorliegenden Untersuchungen beziehen sich auf die mathematische Behandlung des ldquorModalwellenrdquo-Problems. Die achsensymmetrische Strömung einer nichtviskosen Flüssigkeit in einem dünnwandigen viskoelastischen Rohr, unter bestimmten vereinfachenden Annahmen, wird betrachtet. Zuerst werden die Gleichungen des Ausbreitungsraumes im Langwellenbereich abgeleitet und eine allgemeine Methode zur Herleitung dieser Gleichungen für beliebige Wellenlängen bei nichtrotierender Strömung angegeben. Eine Operatorenmethode mit multiplem Maßstab wird verwendet zur Herleitung der nichtlinearen Schrödinger-Gleichung für die Modulation der periodischen Wellen, und die ldquorlangmodulierten Wellenrdquo sowie die ldquormodulierten Langwellenrdquo werden aufgezeigt. Weiters wird die Existenz und die Stabilität der Stokes-Wellen im System untersucht. Anschließend werden die progressiven Wellenlösungen der Langwellengleichungen diskutiert. Eines der wichtigsten Ergebnisse dieser Arbeit ist, daß die Gleichungen des Ausbreitungsraumes keine partiellen Differentialgleichungen mehr sind, sondern Ausdrücke von Pseudo-Differentialoperatoren.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider numerical solutions of nonlinear multiterm fractional integrodifferential equations, where the order of the highest derivative is fractional and positive but is otherwise arbitrary. Here, we extend and unify our previous work, where a Galerkin method was developed for efficiently approximating fractional order operators and where elements of the present differential algebraic equation (DAE) formulation were introduced. The DAE system developed here for arbitrary orders of the fractional derivative includes an added block of equations for each fractional order operator, as well as forcing terms arising from nonzero initial conditions. We motivate and explain the structure of the DAE in detail. We explain how nonzero initial conditions should be incorporated within the approximation. We point out that our approach approximates the system and not a specific solution. Consequently, some questions not easily accessible to solvers of initial value problems, such as stability analyses, can be tackled using our approach. Numerical examples show excellent accuracy. DOI: 10.1115/1.4002516]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modification of the axisymmetric viscous flow due to relative rotation of the disk or fluid by a translation of the boundary is studied. The fluid is taken to be compressible, and the relative rotation and translation velocity of the disk or fluid are time-dependent. The nonlinear partial differential equations governing the motion are solved numerically using an implicit finite difference scheme and Newton's linearisation technique. Numerical solutions are obtained at various non-dimensional times and disk temperatures. The non-symmetric part of the flow (secondary flow) describing the translation effect generates a velocity field at each plane parallel to the disk. The cartesian components of velocity due to secondary flow exhibit oscillations when the motion is due to rotation of the fluid on a translating disk. Increase in translation velocity produces an increment in the radial skin friction but reduces the tangential skin friction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analytical solutions of the generalized Bloch equations for an arbitrary set of initial values of the x, y, and z magnetization components are given in the rotating frame. The solutions involve the decoupling of the three coupled differential equations such that a third-order differential equation in each magnetization variable is obtained. In contrast to the previously reported solutions given by Torrey, the present attempt paves the way for more direct physical insight into the behavior of each magnetization component. Special cases have been discussed that highlight the utility of the general solutions. Representative trajectories of magnetization components are given, illustrating their behavior with respect to the values of off-resonance and initial conditions. (C) 1995 Academic Press, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There exist several standard numerical methods for integrating ordinary differential equations. However, if one is interested in integration of Hamiltonian systems, these methods can lead to wrong results. This is due to the fact that these methods do not explicitly preserve the so-called 'symplectic condition' (that needs to be satisfied for Hamiltonian systems) at every integration step. In this paper, we look at various methods for integration that preserve the symplectic condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamics of a feedback-controlled rigid robot is most commonly described by a set of nonlinear ordinary differential equations. In this paper we analyze these equations, representing the feedback-controlled motion of two- and three-degrees-of-freedom rigid robots with revolute (R) and prismatic (P) joints in the absence of compliance, friction, and potential energy, for the possibility of chaotic motions. We first study the unforced or inertial motions of the robots, and show that when the Gaussian or Riemannian curvature of the configuration space of a robot is negative, the robot equations can exhibit chaos. If the curvature is zero or positive, then the robot equations cannot exhibit chaos. We show that among the two-degrees-of-freedom robots, the PP and the PR robot have zero Gaussian curvature while the RP and RR robots have negative Gaussian curvatures. For the three-degrees-of-freedom robots, we analyze the two well-known RRP and RRR configurations of the Stanford arm and the PUMA manipulator respectively, and derive the conditions for negative curvature and possible chaotic motions. The criteria of negative curvature cannot be used for the forced or feedback-controlled motions. For the forced motion, we resort to the well-known numerical techniques and compute chaos maps, Poincare maps, and bifurcation diagrams. Numerical results are presented for the two-degrees-of-freedom RP and RR robots, and we show that these robot equations can exhibit chaos for low controller gains and for large underestimated models. From the bifurcation diagrams, the route to chaos appears to be through period doubling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a derivative-free two-stage extended Kalman filter (2-EKF) especially suited for state and parameter identification of mechanical oscillators under Gaussian white noise. Two sources of modeling uncertainties are considered: (1) errors in linearization, and (2) an inadequate system model. The state vector is presently composed of the original dynamical/parameter states plus the so-called bias states accounting for the unmodeled dynamics. An extended Kalman estimation concept is applied within a framework predicated on explicit and derivative-free local linearizations (DLL) of nonlinear drift terms in the governing stochastic differential equations (SDEs). The original and bias states are estimated by two separate filters; the bias filter improves the estimates of the original states. Measurements are artificially generated by corrupting the numerical solutions of the SDEs with noise through an implicit form of a higher-order linearization. Numerical illustrations are provided for a few single- and multidegree-of-freedom nonlinear oscillators, demonstrating the remarkable promise that 2-EKF holds over its more conventional EKF-based counterparts. DOI: 10.1061/(ASCE)EM.1943-7889.0000255. (C) 2011 American Society of Civil Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider the problem of computing numerical solutions for Ito stochastic differential equations (SDEs). The five-stage Milstein (FSM) methods are constructed for solving SDEs driven by an m-dimensional Wiener process. The FSM methods are fully explicit methods. It is proved that the FSM methods are convergent with strong order 1 for SDEs driven by an m-dimensional Wiener process. The analysis of stability (with multidimensional Wiener process) shows that the mean-square stable regions of the FSM methods are unbounded. The analysis of stability shows that the mean-square stable regions of the methods proposed in this paper are larger than the Milstein method and three-stage Milstein methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The issue of intermittency in numerical solutions of the 3D Navier-Stokes equations on a periodic box 0, L](3) is addressed through four sets of numerical simulations that calculate a new set of variables defined by D-m(t) = (pi(-1)(0) Omega(m))(alpha m) for 1 <= m <= infinity where alpha(m) = 2m/(4m - 3) and Omega(m)(t)](2m) = L-3 integral(v) vertical bar omega vertical bar(2m) dV with pi(0) = vL(-2). All four simulations unexpectedly show that the D-m are ordered for m = 1,..., 9 such that Dm+1 < D-m. Moreover, the D-m squeeze together such that Dm+1/D-m NE arrow 1 as m increases. The values of D-1 lie far above the values of the rest of the D-m, giving rise to a suggestion that a depletion of nonlinearity is occurring which could be the cause of Navier-Stokes regularity. The first simulation is of very anisotropic decaying turbulence; the second and third are of decaying isotropic turbulence from random initial conditions and forced isotropic turbulence at fixed Grashof number respectively; the fourth is of very-high-Reynolds-number forced, stationary, isotropic turbulence at up to resolutions of 4096(3).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the current study is to evaluate the fidelity of load cell reading during impact testing in a drop-weight impactor using lumped parameter modeling. For the most common configuration of a moving impactor-load cell system in which dynamic load is transferred from the impactor head to the load cell, a quantitative assessment is made of the possible discrepancy that can result in load cell response. A 3-DOF (degrees-of-freedom) LPM (lumped parameter model) is considered to represent a given impact testing set-up. In this model, a test specimen in the form of a steel hat section similar to front rails of cars is represented by a nonlinear spring while the load cell is assumed to behave in a linear manner due to its high stiffness. Assuming a given load-displacement response obtained in an actual test as the true behavior of the specimen, the numerical solution of the governing differential equations following an implicit time integration scheme is shown to yield an excellent reproduction of the mechanical behavior of the specimen thereby confirming the accuracy of the numerical approach. The spring representing the load cell, however,predicts a response that qualitatively matches the assumed load-displacement response of the test specimen with a perceptibly lower magnitude of load.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study the free vibration of axially functionally graded (AFG) Timoshenko beams, with uniform cross-section and having fixed-fixed boundary condition. For certain polynomial variations of the material mass density, elastic modulus and shear modulus, along the length of the beam, there exists a fundamental closed form solution to the coupled second order governing differential equations with variable coefficients. It is found that there are an infinite number of non-homogeneous Timoshenko beams, with various material mass density, elastic modulus and shear modulus distributions having simple polynomial variations, which share the same fundamental frequency. The derived results can be used as benchmark solutions for testing approximate or numerical methods used for the vibration analysis of non-homogeneous Timoshenko beams. They can also be useful for designing fixed-fixed non-homogeneous Timoshenko beams which may be required to vibrate with a particular frequency. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A modified approach to obtain approximate numerical solutions of Fredholin integral equations of the second kind is presented. The error bound is explained by the aid of several illustrative examples. In each example, the approximate solution is compared with the exact solution, wherever possible, and an excellent agreement is observed. In addition, the error bound in each example is compared with the one obtained by the Nystrom method. It is found that the error bound of the present method is smaller than the ones obtained by the Nystrom method. Further, the present method is successfully applied to derive the solution of an integral equation arising in a special Dirichlet problem. (C) 2015 Elsevier Inc. All rights reserved.