106 resultados para Development of Executives
Resumo:
A bioprocessing approach for the extraction of base, nuclear and precious metals from refractory and lean grade ores has been reviewed in this paper. Characteristic morphological features of Thiobacillus ferrooxidans, the organism which has been extensively used for biooxidation of sulphide ores have been discussed. Mechanisms of chemoautotrophy and mineral oxidation have been illustrated. The current engineering applications of this microorganism have also been brought out. Various methods for accelerating the growth of Thiobacillus ferrooxidans for faster biooxidation and genetic manipulation for development of desired strains have been outlined.
Resumo:
Through the application of negative reduction potential significant reduction of manganic and iron oxides in the ocean manganese nodules can be achieved, liberating the occluded copper, nickel and cobalt for easy dissolution in an acid medium. Electroleaching and electrobioleaching of ocean manganese nodules in the presence of Thiobacillus ferrooxidans and Thiobacillus thiooxidans at the above negative applied dc potentials resulted in significant dissolution of copper, nickel and cobalt in 1 M H2SO4. The role of galvanic interactions in the bioleaching of ocean manganese nodules in the presence of T thiooxidans is also discussed, (C) 2002 Published by Elsevier Science Ltd.
Resumo:
Sugarcane streak mosaic virus (SCSMV), causes mosaic disease of sugarcane and is thought to belong to a new undescribed genus in the family Potyviridae. The coat protein (CP) gene from the Andhra Pradesh (AP) isolate of SCSMV (SCSMV AP) was cloned and expressed in Escherichia coli. The recombinant coat protein was used to raise high quality antiserum. The CP antiserum was used to develop an immunocapture reverse transcription-polymerase chain reaction (IC-RT-PCR) based assay for the detection and discrimination of SCSMV isolates in South India. The sequence of the cloned PCR products encoding 3'untranslated region (UTR) and CP regions of the virus isolates from three different locations in South India viz. Tanuku (Coastal Andhra Pradesh), Coimbatore (Tamil Nadu) and Hospet (Karnataka) was compared with that of SCSMV AP The analysis showed that they share 89.4, 89.5 and 90% identity respectively at the nucleotide level. This suggests that the isolates causing mosaic disease of sugarcane in South India are indeed strains of SCSMV In addition, the sensitivity of the IC-RT-PCR was compared with direct antigen coating-enzyme linked immunosorbent assay (DAC-ELISA) and dot-blot immunobinding assays and was found to be more sensitive and hence could be used to detect the presence of virus in sugarcane breeding, germplasm centres and in quarantine programs.
Resumo:
Hypoeutectic boron addition (0.1 wt.%) to Ti-6Al-4V is known to cause significant refinement of the cast microstructure. In the present investigation, it has been observed that trace boron addition to Ti-6Al-4V alloy also ensures excellent microstructural homogeneity throughout the ingot. A subdued thermal gradient, related to the basic grain refinement mechanism by constitutional undercooling, persists during solidification for the boron-containing alloy and maintains equivalent beta grain growth kinetics at different locations in the ingot. The Ti-6Al-4V alloy shows relatively strong texture with preferred components (e.g. ingot axis parallel to[0 0 0 1] or [1 0 (1) over bar 0]) over the entire ingot and gradual transition of texture components along the radius. For Ti-6Al-4V-0.1B alloy, significant weakening characterizes both the high-temperature beta and room-temperature a texture. In addition to solidification factors that are responsible for weak beta texture development, microstructural differences due to boron addition, e.g. the absence of grain boundary alpha phase and presence of TiB particles, strongly affects the mechanism of beta -> alpha phase transformation and consequently weakens the alpha phase texture. Based on the understanding developed for the boron-modified alloy, a novel mechanism has been proposed for the microstructure and texture formation during solidification and phase transformation. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.