129 resultados para Decoding
Resumo:
Low density parity-check (LDPC) codes are a class of linear block codes that are decoded by running belief propagation (BP) algorithm or log-likelihood ratio belief propagation (LLR-BP) over the factor graph of the code. One of the disadvantages of LDPC codes is the onset of an error floor at high values of signal to noise ratio caused by trapping sets. In this paper, we propose a two stage decoder to deal with different types of trapping sets. Oscillating trapping sets are taken care by the first stage of the decoder and the elementary trapping sets are handled by the second stage of the decoder. Simulation results on the regular PEG (504,252,3,6) code and the irregular PEG (1024,518,15,8) code shows that the proposed two stage decoder performs significantly better than the standard decoder.
Resumo:
Recently, Guo and Xia introduced low complexity decoders called Partial Interference Cancellation (PIC) and PIC with Successive Interference Cancellation (PIC-SIC), which include the Zero Forcing (ZF) and ZF-SIC receivers as special cases, for point-to-point MIMO channels. In this paper, we show that PIC and PIC-SIC decoders are capable of achieving the full cooperative diversity available in wireless relay networks. We give sufficient conditions for a Distributed Space-Time Block Code (DSTBC) to achieve full diversity with PIC and PIC-SIC decoders and construct a new class of DSTBCs with low complexity full-diversity PIC-SIC decoding using complex orthogonal designs. The new class of codes includes a number of known full-diversity PIC/PIC-SIC decodable Space-Time Block Codes (STBCs) constructed for point-to-point channels as special cases. The proposed DSTBCs achieve higher rates (in complex symbols per channel use) than the multigroup ML decodable DSTBCs available in the literature. Simulation results show that the proposed codes have better bit error rate performance than the best known low complexity, full-diversity DSTBCs.
Resumo:
Decoding of linear space-time block codes (STBCs) with sphere-decoding (SD) is well known. A fast-version of the SD known as fast sphere decoding (FSD) has been recently studied by Biglieri, Hong and Viterbo. Viewing a linear STBC as a vector space spanned by its defining weight matrices over the real number field, we define a quadratic form (QF), called the Hurwitz-Radon QF (HRQF), on this vector space and give a QF interpretation of the FSD complexity of a linear STBC. It is shown that the FSD complexity is only a function of the weight matrices defining the code and their ordering, and not of the channel realization (even though the equivalent channel when SD is used depends on the channel realization) or the number of receive antennas. It is also shown that the FSD complexity is completely captured into a single matrix obtained from the HRQF. Moreover, for a given set of weight matrices, an algorithm to obtain a best ordering of them leading to the least FSD complexity is presented. The well known classes of low FSD complexity codes (multi-group decodable codes, fast decodable codes and fast group decodable codes) are presented in the framework of HRQF.
Resumo:
Video decoders used in emerging applications need to be flexible to handle a large variety of video formats and deliver scalable performance to handle wide variations in workloads. In this paper we propose a unified software and hardware architecture for video decoding to achieve scalable performance with flexibility. The light weight processor tiles and the reconfigurable hardware tiles in our architecture enable software and hardware implementations to co-exist, while a programmable interconnect enables dynamic interconnection of the tiles. Our process network oriented compilation flow achieves realization agnostic application partitioning and enables seamless migration across uniprocessor, multi-processor, semi hardware and full hardware implementations of a video decoder. An application quality of service aware scheduler monitors and controls the operation of the entire system. We prove the concept through a prototype of the architecture on an off-the-shelf FPGA. The FPGA prototype shows a scaling in performance from QCIF to 1080p resolutions in four discrete steps. We also demonstrate that the reconfiguration time is short enough to allow migration from one configuration to the other without any frame loss.
Resumo:
The problem of designing good space-time block codes (STBCs) with low maximum-likelihood (ML) decoding complexity has gathered much attention in the literature. All the known low ML decoding complexity techniques utilize the same approach of exploiting either the multigroup decodable or the fast-decodable (conditionally multigroup decodable) structure of a code. We refer to this well-known technique of decoding STBCs as conditional ML (CML) decoding. In this paper, we introduce a new framework to construct ML decoders for STBCs based on the generalized distributive law (GDL) and the factor-graph-based sum-product algorithm. We say that an STBC is fast GDL decodable if the order of GDL decoding complexity of the code, with respect to the constellation size, is strictly less than M-lambda, where lambda is the number of independent symbols in the STBC. We give sufficient conditions for an STBC to admit fast GDL decoding, and show that both multigroup and conditionally multigroup decodable codes are fast GDL decodable. For any STBC, whether fast GDL decodable or not, we show that the GDL decoding complexity is strictly less than the CML decoding complexity. For instance, for any STBC obtained from cyclic division algebras which is not multigroup or conditionally multigroup decodable, the GDL decoder provides about 12 times reduction in complexity compared to the CML decoder. Similarly, for the Golden code, which is conditionally multigroup decodable, the GDL decoder is only half as complex as the CML decoder.
On the sphere decoding complexity of high-rate multigroup decodable STBCs in asymmetric MIMO systems
Resumo:
A space-time block code (STBC) is said to be multigroup decodable if the information symbols encoded by it can be partitioned into two or more groups such that each group of symbols can be maximum-likelihood (ML) decoded independently of the other symbol groups. In this paper, we show that the upper triangular matrix encountered during the sphere decoding of a linear dispersion STBC can be rank-deficient even when the rate of the code is less than the minimum of the number of transmit and receive antennas. We then show that all known families of high-rate (rate greater than 1) multigroup decodable codes have rank-deficient matrix even when the rate is less than the number of transmit and receive antennas, and this rank-deficiency problem arises only in asymmetric MIMO systems when the number of receive antennas is strictly less than the number of transmit antennas. Unlike the codes with full-rank matrix, the complexity of the sphere decoding-based ML decoder for STBCs with rank-deficient matrix is polynomial in the constellation size, and hence is high. We derive the ML sphere decoding complexity of most of the known high-rate multigroup decodable codes, and show that for each code, the complexity is a decreasing function of the number of receive antennas.
Resumo:
The problem of designing good Space-Time Block Codes (STBCs) with low maximum-likelihood (ML) decoding complexity has gathered much attention in the literature. All the known low ML decoding complexity techniques utilize the same approach of exploiting either the multigroup decodable or the fast-decodable (conditionally multigroup decodable) structure of a code. We refer to this well known technique of decoding STBCs as Conditional ML (CML) decoding. In [1], we introduced a framework to construct ML decoders for STBCs based on the Generalized Distributive Law (GDL) and the Factor-graph based Sum-Product Algorithm, and showed that for two specific families of STBCs, the Toepltiz codes and the Overlapped Alamouti Codes (OACs), the GDL based ML decoders have strictly less complexity than the CML decoders. In this paper, we introduce a `traceback' step to the GDL decoding algorithm of STBCs, which enables roughly 4 times reduction in the complexity of the GDL decoders proposed in [1]. Utilizing this complexity reduction from `traceback', we then show that for any STBC (not just the Toeplitz and Overlapped Alamouti Codes), the GDL decoding complexity is strictly less than the CML decoding complexity. For instance, for any STBC obtained from Cyclic Division Algebras that is not multigroup or conditionally multigroup decodable, the GDL decoder provides approximately 12 times reduction in complexity compared to the CML decoder. Similarly, for the Golden code, which is conditionally multigroup decodable, the GDL decoder is only about half as complex as the CML decoder.
Resumo:
Construction of high rate Space Time Block Codes (STBCs) with low decoding complexity has been studied widely using techniques such as sphere decoding and non Maximum-Likelihood (ML) decoders such as the QR decomposition decoder with M paths (QRDM decoder). Recently Ren et al., presented a new class of STBCs known as the block orthogonal STBCs (BOSTBCs), which could be exploited by the QRDM decoders to achieve significant decoding complexity reduction without performance loss. The block orthogonal property of the codes constructed was however only shown via simulations. In this paper, we give analytical proofs for the block orthogonal structure of various existing codes in literature including the codes constructed in the paper by Ren et al. We show that codes formed as the sum of Clifford Unitary Weight Designs (CUWDs) or Coordinate Interleaved Orthogonal Designs (CIODs) exhibit block orthogonal structure. We also provide new construction of block orthogonal codes from Cyclic Division Algebras (CDAs) and Crossed-Product Algebras (CPAs). In addition, we show how the block orthogonal property of the STBCs can be exploited to reduce the decoding complexity of a sphere decoder using a depth first search approach. Simulation results of the decoding complexity show a 30% reduction in the number of floating point operations (FLOPS) of BOSTBCs as compared to STBCs without the block orthogonal structure.
Resumo:
Decoding of linear space-time block codes (STBCs) with sphere-decoding (SD) is well known. A fast-version of the SD known as fast sphere decoding (FSD) was introduced by Biglieri, Hong and Viterbo. Viewing a linear STBC as a vector space spanned by its defining weight matrices over the real number field, we define a quadratic form (QF), called the Hurwitz-Radon QF (HRQF), on this vector space and give a QF interpretation of the FSD complexity of a linear STBC. It is shown that the FSD complexity is only a function of the weight matrices defining the code and their ordering, and not of the channel realization (even though the equivalent channel when SD is used depends on the channel realization) or the number of receive antennas. It is also shown that the FSD complexity is completely captured into a single matrix obtained from the HRQF. Moreover, for a given set of weight matrices, an algorithm to obtain an optimal ordering of them leading to the least FSD complexity is presented. The well known classes of low FSD complexity codes (multi-group decodable codes, fast decodable codes and fast group decodable codes) are presented in the framework of HRQF.
Resumo:
Soft-decision multiple-symbol differential sphere decoding (MSDSD) is proposed for orthogonal frequency-division multiplexing (OFDM)-aided differential space-time shift keying (DSTSK)-aided transmission over frequency-selective channels. Specifically, the DSTSK signaling blocks are generated by the channel-encoded source information and the space-time (ST) blocks are appropriately mapped to a number of OFDM subcarriers. After OFDM demodulation, the DSTSK signal is noncoherently detected by our soft-decision MSDSD detector. A novel soft-decision MSDSD detector is designed, and the associated decision rule is derived for the DSTSK scheme. Our simulation results demonstrate that an SNR reduction of 2 dB is achieved by the proposed scheme using an MSDSD window size of N-w = 4 over the conventional soft-decision-aided differential detection benchmarker, while communicating over dispersive channels and dispensing with channel estimation (CE).
Resumo:
The problem of secure unicast communication over a two hop Amplify-and-Forward wireless relay network with multiple eavesdroppers is considered. Assuming that a receiver (destination or eavesdropper) can decode a message only if the received SNR is above a predefined threshold, we consider this problem in two scenarios. In the first scenario, we maximize the SNR at the legitimate destination, subject to the condition that the received SNR at each eavesdropper is below the target threshold. Due to the non-convex nature of the objective function and eavesdroppers' constraints, we transform variables and obtain a quadratically constrained quadratic program (QCQP) with convex constraints, which can be solved efficiently. When the constraints are not convex, we consider a semidefinite relaxation (SDR) to obtain computationally efficient approximate solution. In the second scenario, we minimize the total power consumed by all relay nodes, subject to the condition that the received SNR at the legitimate destination is above the threshold and at every eavesdropper, it is below the corresponding threshold. We propose a semidefinite relaxation of the problem in this scenario and also provide an analytical lower bound.
Resumo:
Space-time codes from complex orthogonal designs (CODs) with no zero entries offer low Peak to Average Power Ratio (PAPR) and avoid the problem of switching off antennas. But square CODs for 2(a) antennas with a + 1. complex variables, with no zero entries were discovered only for a <= 3 and if a + 1 = 2(k), for k >= 4. In this paper, a method of obtaining no zero entry (NZE) square designs, called Complex Partial-Orthogonal Designs (CPODs), for 2(a+1) antennas whenever a certain type of NZE code exists for 2(a) antennas is presented. Then, starting from a so constructed NZE CPOD for n = 2(a+1) antennas, a construction procedure is given to obtain NZE CPODs for 2n antennas, successively. Compared to the CODs, CPODs have slightly more ML decoding complexity for rectangular QAM constellations and the same ML decoding complexity for other complex constellations. Using the recently constructed NZE CODs for 8 antennas our method leads to NZE CPODs for 16 antennas. The class of CPODs do not offer full-diversity for all complex constellations. For the NZE CPODs presented in the paper, conditions on the signal sets which will guarantee full-diversity are identified. Simulation results show that bit error performance of our codes is same as that of the CODs under average power constraint and superior to CODs under peak power constraint.
Resumo:
A relay network with N relays and a single source-destination pair is called a partially-coherent relay channel (PCRC) if the destination has perfect channel state information (CSI) of all the channels and the relays have only the phase information of the source-to-relay channels. In this paper, first, a new set of necessary and sufficient conditions for a space-time block code (STBC) to be single-symbol decodable (SSD) for colocated multiple antenna communication is obtained. Then, this is extended to a set of necessary and sufficient conditions for a distributed STBC (DSTBC) to be SSD for. a PCRC. Using this, several SSD DSTBCs for PCRC are identified. It is proved that even if a SSD STBC for a co-located MIMO channel does not satisfy the additional conditions for the code to be SSD for a PCRC, single-symbol decoding of it in a PCRC gives full-diversity and only coding gain is lost. It is shown that when a DSTBC is SSD for a PCRC, then arbitrary coordinate interleaving of the in-phase and quadrature-phase components of the variables does not disturb its SSD property for PCRC. Finally, it is shown that the possibility of channel phase compensation operation at the relay nodes using partial CSI at the relays increases the possible rate of SSD DSTBCs from (2)/(N) when the relays do not have CSI to(1)/(2), which is independent of N.
Resumo:
In this paper, we generalize the existing rate-one space frequency (SF) and space-time frequency (STF) code constructions. The objective of this exercise is to provide a systematic design of full-diversity STF codes with high coding gain. Under this generalization, STF codes are formulated as linear transformations of data. Conditions on these linear transforms are then derived so that the resulting STF codes achieve full diversity and high coding gain with a moderate decoding complexity. Many of these conditions involve channel parameters like delay profile (DP) and temporal correlation. When these quantities are not available at the transmitter, design of codes that exploit full diversity on channels with arbitrary DIP and temporal correlation is considered. Complete characterization of a class of such robust codes is provided and their bit error rate (BER) performance is evaluated. On the other hand, when channel DIP and temporal correlation are available at the transmitter, linear transforms are optimized to maximize the coding gain of full-diversity STF codes. BER performance of such optimized codes is shown to be better than those of existing codes.
Resumo:
A formal chemical nomenclature system WISENOM based on a context-free grammar and graph coding is described. The system is unique, unambiguous, easily pronounceable, encodable, and decodable for organic compounds. Being a formal system, every name is provable as a theorem or derivable as a terminal sentence by using the basic axioms and rewrite rules. The syntax in Backus-Naur form, examples of name derivations, and the corresponding derivation trees are provided. Encoding procedures to convert connectivity tables to WISENOM, parsing, and decoding are described.