118 resultados para DOMAIN-BOUNDARY STRUCTURE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quinuclidine grafted cationic bile salts are forming salted hydrogels. An extensive investigation of the effect of the electrolyte and counterions on the gelation has been envisaged. The special interest of the quinuclidine grafted bile salt is due to its broader experimental range of gelation to study the effect of electrolyte. Rheological features of the hydrogels are typical of enthalpic networks exhibiting a scaling law of the elastic shear modulus with the concentration (scaling exponent 2.2) modeling cellular solids in which the bending modulus is the dominant parameter. The addition of monovalent salt (NaCl) favors the formation of gels in a first range (0.00117 g cm-3 (0.02 M) < TNaCl < 0.04675 g cm-3 (0.8 M)). At larger salt concentrations, the gels become more heterogeneous with nodal zones in the micron scale. Small-angle neutron scattering experiments have been used to characterize the rigid fibers ( ≈ 68 Å) and the nodal zones. Stress sweep and creeprecovery measurements are used to relate the lack of linear viscoelastic domain to a mechanism of disentanglement of the fibers from their associations into fagots. The electrostatic interactions can be screened by addition of salt to induce a progressive evolution toward flocculation. SEM, UV absorbance, and SAXS study of the Bragg peak at large Q-values complete the investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A numerical analysis of the gas dynamic structure of a two-dimensional laminar boundary layer diffusion flame over a porous flat plate in a confined flow is made on the basis of the familiar boundary layer and flame sheet approximations neglecting buoyancy effects. The governing equations of aerothermochemistry with the appropriate boundary conditions are solved using the Patankar-Spalding method. The analysis predicts the flame shape, profiles of temperature, concentrations of variousspecies, and the density of the mixture across the boundary layer. In addition, it also predicts the pressure gradient in the flow direction arising from the confinement ofthe flow and the consequent velocity overshoot near the flame surface. The results of thecomputation performed for an n-pentane-air system are compared with experimental data andthe agreement is found to be satisfactory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IN the last two decades, the instantaneous structure of a turbulent boundary layer has been examined by many in an effort to understand the dynamics of the flow. Distinct and well-defined flow patterns that seem to have great relevance to the turbulence production mechanism have been observed in the wall region.1'2 The flow near the wall is intermittent with periodic eruptions of the fluid, a phenomenon generally termed "bursting process." Earlier investigations in this field were limited to liquid flows at low speeds and the entire flowpattern was observed using flow visualization techniques.Study was later extended to boundary-layer flows in windtunnels at higher speeds and Reynolds numbers using hot-wiresignals for the analysis of the bursting phenomenon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the similarity solution for the steady incompressible laminar boundary layer flow of a micropolar fluid past an infinite wedge. The governing equations have been solved numerically using fourth orderRunge-Kutta-Gill method. The results indicate the extent to which the velocity and microrotation profiles, and the surface shear stress are influenced by coupling, microrotation, and pressure gradient parameters. The important role played by the standard length of the micropolar fluid in determining the structure of the boundary layer has also been discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acta Crystallographica Section A: Foundations of Crystallography covers theoretical and fundamental aspects of the structure of matter. The journal is the prime forum for research in diffraction physics and the theory of crystallographic structure determination by diffraction methods using X-rays, neutrons and electrons. The structures include periodic and aperiodic crystals, and non-periodic disordered materials, and the corresponding Bragg, satellite and diffuse scattering, thermal motion and symmetry aspects. Spatial resolutions range from the subatomic domain in charge-density studies to nanodimensional imperfections such as dislocations and twin walls. The chemistry encompasses metals, alloys, and inorganic, organic and biological materials. Structure prediction and properties such as the theory of phase transformations are also covered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental investigation of the mean flow characteristics of two-dimensional turbulent boundary layers over surfaces of mild longitudinal curvature is reported. The study covered both convex and concave walls of \d/Rw I « 0.013 (d being the boundary-layer thickness and Rw being the wall radius). It was found that, whereas the region close to the wall was not affected significantly by wall curvature, the outer region was very sensitive to even mild wall curvature. A detailed study of the wake region using present and other available data suggests a systematic effect of b/Rw on the wake structure. The paper also discusses in detail the effect of mild wall curvature on the boundary-layer development with particular emphasis on the difference in behavior of the boundary layer at short and long distances from the leading edge of the curved wall, an aspect which has not received sufficient attention in previous experimental investigations. An attempt has been made to explain this behavior from a consideration of the structure of turbulence in boundary layers over curved surfaces taken into account.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigations have been carried out of some aspects of the fine-scale structure of turbulence in grid flows, in boundary layers in a zero pressure gradient and in a boundary layer in a strong favourable pressure gradient leading to relaminarization. Using a narrow-band filter with suitable mid-band frequencies, the properties of the fine-scale structure (appearing as high frequency pulses in the filtered signal) were analysed using the variable discriminator level technique employed earlier by Rao, Narasimha & Badri Narayanan (1971). It was found that, irrespective of the type of flow, the characteristic pulse frequency (say Np) defined by Rao et al. was about 0·6 times the frequency of the zero crossings. It was also found that, over the small range of Reynolds numbers tested, the ratio of the width of the fine-scale regions to the Kolmogorov scale increased linearly with Reynolds number in grid turbulence as well as in flat-plate boundarylayer flow. Nearly lognormal distributions were exhibited by this ratio as well as by the interval between successive zero crossings. The values of Np and of the zero-crossing rate were found to be nearly constant across the boundary layer, except towards its outer edge and very near the wall. In the zero-pressure-gradient boundary-layer flow, very near the wall the high frequency pulses were found to occur mostly when the longitudinal velocity fluctuation u was positive (i.e. above the mean), whereas in the outer part of the boundary layer the pulses more often occurred when u was negative. During acceleration this correlation between the fine-scale motion and the sign of u was less marked.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurements of both the velocity and the temperature field have been made in the thermal layer that grows inside a turbulent boundary layer which is subjected to a small step change in surface heat flux. Upstream of the step, the wall heat flux is zero and the velocity boundary layer is nearly self-preserving. The thermal-layer measurements are discussed in the context of a self-preserving analysis for the temperature disturbance which grows underneath a thick external turbulent boundary layer. A logarithmic mean temperature profile is established downstream of the step but the budget for the mean-square temperature fluctuations shows that, in the inner region of the thermal layer, the production and dissipation of temperature fluctuations are not quite equal at the furthest downstream measurement station. The measurements for both the mean and the fluctuating temperature field indicate that the relaxation distance for the thermal layer is quite large, of the order of 1000θ0, where θ0 is the momentum thickness of the boundary layer at the step. Statistics of the thermal-layer interface and conditionally sampled measurements with respect to this interface are presented. Measurements of the temperature intermittency factor indicate that the interface is normally distributed with respect to its mean position. Near the step, the passive heat contaminant acts as an effective marker of the organized turbulence structure that has been observed in the wall region of a boundary layer. Accordingly, conditional averages of Reynolds stresses and heat fluxes measured in the heated part of the flow are considerably larger than the conventional averages when the temperature intermittency factor is small.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sensitive dimerization assay for DNA binding proteins has been developed using gene fusion technology. For this purpose, we have engineered a gene fusion using protein A gene of Staphylococcus aureus and C gene, the late gene transactivator of bacteriophage Mu. The C gene was fused to the 3' end of the gene for protein A to generate an A- C fusion. The overexpressed fusion protein was purified in a single step using immunoglobulin affinity chromatography. Purified fusion protein exhibits DNA binding activity as demonstrated by electrophoretic mobility shift assays. When the fusion protein A-C was mixed with C and analyzed for DNA binding, in addition to C and A-C specific complexes, a single intermediate complex comprising of a heterodimer of C and A-C fusion proteins was observed. Further, the protein A moiety in the fusion protein A-C does not contribute to DNA binding as demonstrated by proteolytic cleavage and circular dichroism (CD) analysis. The assay has also been applied to analyze the DNA binding domain of C protein by generating fusions between protein A and N- and C-terminal deletion mutants of C. The results indicate a role for the region towards the carboxy terminal of the protein in DNA binding. The general applicability of this method is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional analytical/numerical methods employing triangulation technique are suitable for locating acoustic emission (AE) source in a planar structure without structural discontinuities. But these methods cannot be extended to structures with complicated geometry, and, also, the problem gets compounded if the material of the structure is anisotropic warranting complex analytical velocity models. A geodesic approach using Voronoi construction is proposed in this work to locate the AE source in a composite structure. The approach is based on the fact that the wave takes minimum energy path to travel from the source to any other point in the connected domain. The geodesics are computed on the meshed surface of the structure using graph theory based on Dijkstra's algorithm. By propagating the waves in reverse virtually from these sensors along the geodesic path and by locating the first intersection point of these waves, one can get the AE source location. In this work, the geodesic approach is shown more suitable for a practicable source location solution in a composite structure with arbitrary surface containing finite discontinuities. Experiments have been conducted on composite plate specimens of simple and complex geometry to validate this method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Homodimeric protein tryptophanyl tRNA synthetase (TrpRS) has a Rossmann fold domain and belongs to the 1c subclass of aminoacyl tRNA synthetases. This enzyme performs the function of acylating the cognate tRNA. This process involves a number of molecules (2 protein subunits, 2 tRNAs and 2 activated Trps) and thus it is difficult to follow the complex steps in this process. Structures of human TrpRS complexed with certain ligands are available. Based on structural and biochemical data, mechanism of activation of Trp has been speculated. However, no structure has yet been solved in the presence of both the tRNA(Trp) and the activated Trp (TrpAMP). In this study, we have modeled the structure of human TrpRS bound to the activated ligand and the cognate tRNA. In addition, we have performed molecular dynamics (MD) simulations on these models as well as other complexes to capture the dynamical process of ligand induced conformational changes. We have analyzed both the local and global changes in the protein conformation from the protein structure network (PSN) of MD snapshots, by a method which was recently developed in our laboratory in the context of the functionally monomeric protein, methionyl tRNA synthetase. From these investigations, we obtain important information such as the ligand induced correlation between different residues of this protein, asymmetric binding of the ligands to the two subunits of the protein as seen in the crystal structure analysis, and the path of communication between the anticodon region and the aminoacylation site. Here we are able to elucidate the role of dimer interface at a level of detail, which has not been captured so far.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vegetable oils are a potential source of base oils for biodegradable lubricants, with limited oxidative stability. This study focuses on the effect of long-term ageing and the influence of oxidation products on the boundary lubrication performance of coconut and soy bean oils, by subjecting them to accelerated ageing in a dark oven at elevated temperature. The samples were collected at regular intervals and analysed for the changes in viscosity, percentage of free fatty acid and peroxide number compared to fresh oil samples. The boundary lubrication properties of these samples were evaluated using a four-ball tester. Increased wear observed with aged oil samples was linked to the destruction of triglyceride structure and formation of peroxides. The difference in the wear properties of soy bean oil to coconut oil was accounted by its high content of unsaturated fatty acids and its susceptibility to undergo oxidation. It was concluded that the coconut oil can perform as a better lubricant and has got a better storage life compared to soy bean oil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The members of cupin superfamily exhibit large variations in their sequences, functions, organization of domains, quaternary associations and the nature of bound metal ion, despite having a conserved beta-barrel structural scaffold. Here, an attempt has been made to understand structure-function relationships among the members of this diverse superfamily and identify the principles governing functional diversity. The cupin superfamily also contains proteins for which the structures are available through world-wide structural genomics initiatives but characterized as ``hypothetical''. We have explored the feasibility of obtaining clues to functions of such proteins by means of comparative analysis with cupins of known structure and function. Methodology/Principal Findings: A 3-D structure-based phylogenetic approach was undertaken. Interestingly, a dendrogram generated solely on the basis of structural dissimilarity measure at the level of domain folds was found to cluster functionally similar members. This clustering also reflects an independent evolution of the two domains in bicupins. Close examination of structural superposition of members across various functional clusters reveals structural variations in regions that not only form the active site pocket but are also involved in interaction with another domain in the same polypeptide or in the oligomer. Conclusions/Significance: Structure-based phylogeny of cupins can influence identification of functions of proteins of yet unknown function with cupin fold. This approach can be extended to other proteins with a common fold that show high evolutionary divergence. This approach is expected to have an influence on the function annotation in structural genomics initiatives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Saccharomyces cerevisiae, transcriptional silencing occurs at the cryptic mating-type loci (HML and HMR), telomeres, and ribosomal DNA ( rDNA; RDN1). Silencing in the rDNA is unusual in that polymerase II (Pol II) promoters within RDN1 are repressed by Sir2 but not Sir3 or Sir4. rDNA silencing unidirectionally spreads leftward, but the mechanism of limiting its spreading is unclear. We searched for silencing barriers flanking the left end of RDN1 by using an established assay for detecting barriers to HMR silencing. Unexpectedly, the unique sequence immediately adjacent to RDN1, which overlaps a prominent cohesin binding site (CARL2), did not have appreciable barrier activity. Instead, a fragment located 2.4 kb to the left, containing a tRNA(Gln) gene and the Ty1 long terminal repeat, had robust barrier activity. The barrier activity was dependent on Pol III transcription of tRNA(Gln), the cohesin protein Smc1, and the SAS1 and Gcn5 histone acetyltransferases. The location of the barrier correlates with the detectable limit of rDNA silencing when SIR2 is overexpressed, where it blocks the spreading of rDNA heterochromatin. We propose a model in which normal Sir2 activity results in termination of silencing near the physical rDNA boundary, while tRNA(Gln) blocks silencing from spreading too far when nucleolar Sir2 pools become elevated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analytical investigation of the transverse shear wave mode tuning with a resonator mass (packing mass) on a Lead Zirconium Titanate (PZT) crystal bonded together with a host plate and its equivalent electric circuit parameters are presented. The energy transfer into the structure for this type of wave modes are much higher in this new design. The novelty of the approach here is the tuning of a single wave mode in the thickness direction using a resonator mass. First, a one-dimensional constitutive model assuming the strain induced only in the thickness direction is considered. As the input voltage is applied to the PZT crystal in the thickness direction, the transverse normal stress distribution induced into the plate is assumed to have parabolic distribution, which is presumed as a function of the geometries of the PZT crystal, packing mass, substrate and the wave penetration depth of the generated wave. For the PZT crystal, the harmonic wave guide solution is assumed for the mechanical displacement and electric fields, while for the packing mass, the former is solved using the boundary conditions. The electromechanical characteristics in terms of the stress transfer, mechanical impedance, electrical displacement, velocity and electric field are analyzed. The analytical solutions for the aforementioned entities are presented on the basis of varying the thickness of the PZT crystal and the packing mass. The results show that for a 25% increase in the thickness of the PZT crystal, there is ~38% decrease in the first resonant frequency, while for the same change in the thickness of the packing mass, the decrease in the resonant frequency is observed as ~35%. Most importantly the tuning of the generated wave can be accomplished with the packing mass at lower frequencies easily. To the end, an equivalent electric circuit, for tuning the transverse shear wave mode is analyzed.