132 resultados para DIFFUSIVE SHOCK ACCELERATION
Resumo:
The electron temperature structure in a weakly ionized plasma is studied allowing the degree of ionization to vary across the shock wave. The values of the electron temperature and the downstream equilibrium temperature obtained with variable ionization are less than those for frozen ionization. The electron temperature rises sharply behind the shock for variable ionization while a gradual increase is predicted by frozen ionization.
Resumo:
Approximate solutions of the B-G-K model equation are obtained for the structure of a plane shock, using various moment methods and a least squares technique. Comparison with available exact solution shows that while none of the methods is uniformly satisfactory, some of them can provide accurate values for the density slope shock thickness delta n . A detailed error analysis provides explanations for this result. An asymptotic analysis of delta n for largeMach numbers shows that it scales with theMaxwell mean free path on the hot side of the shock, and that their ratio is relatively insensitive to the viscosity law for the gas.
Resumo:
We have studied in this paper the propagation of an isothermal shock in the radiative envelopes of the Bosman-Crespin model for a hot star and Boury’s model for a giant star. A spherically symmetric disturbance is supposed to be originated at or outside the surface of the convective core. We have used Whitham’s rule to study the variation in the shock strength and the shock velocity after modifying it for inclusion of pressure, energy and flux of radiation. We find the shock increases in strength as it propagates through the envelopes of decreasing density, pressure and temperature. The velocity of the shock decreases for very weak initial shock strengths, for intermediate initial shock strength it first decreases and then increases, while for large initial shock strength, it always increases. This aspect of the problem throws some light on the stability of the models under consideration.
Resumo:
The propagation of a shock wave of finite strength due to an explosion into inhomogeneous nongravitating and self-gravitating systems has been considered, using similarity principles, supposing that the density varies as an inverse power of distance from the centre of explosion. A large number of systems, characterised by different density exponents and different adiabatic coefficients of the gas have been considered for different shock strengths. The numerical integration from the shock inward has been continued to the surface of singularity where density tends to infinity and which acts like a piston in the self-gravitating case and to the surface where the velocity gradient tends to infinity in the nongravitating case. The effect of variation of shock strength, density exponent and adiabatic coefficient on the location of these singularities and on the distribution of flow parameters behind the shock has been studied. The initial energy of the system and the manner of release of the explosion energy influence strongly the flow behind the shock. The results have been graphically depicted.
Resumo:
The propagation of a shock wave, originating in a stellar interior, is considered when it approaches the surface of the star and assumes a self-similar character, "forgetting" its initial conditions. The flow behind the shock is assumed to be spatially isothermal rather than adiabatic to simulate the conditions of large radiative transfer near the stellar surface. The adiabatic and isothermal flows behind such a shock are compared. The exact shock-propagation laws, obtained by solving the equations in similarity variables, for different values of the parameter δ in the undisturbed density law, ρ0 ∝ xδ, and γ, the ratio of specific heats, are compared with the approximate values calculated by Whitham's characteristic rule and the two show a generally good agreement.
Resumo:
We have presented a new low dissipative kinetic scheme based on a modified Courant Splitting of the molecular velocity through a parameter φ. Conditions for the split fluxes derived based on equilibrium determine φ for a one point shock. It turns out that φ is a function of the Left and Right states to the shock and that these states should satisfy the Rankine-Hugoniot Jump condition. Hence φ is utilized in regions where the gradients are sufficiently high, and is switched to unity in smooth regions. Numerical results confirm a discrete shock structure with a single interior point when the shock is aligned with the grid.
Resumo:
Aerodynamic forces and fore-body convective surface heat transfer rates over a 60 degrees apex-angle blunt cone have been simultaneously measured at a nominal Mach number of 5.75 in the hypersonic shock tunnel HST2. An aluminum model incorporating a three-component accelerometer-based balance system for measuring the aerodynamic forces and an array of platinum thin-film gauges deposited on thermally insulating backing material flush mounted on the model surface is used for convective surface heat transfer measurement in the investigations. The measured value of the drag coefficient varies by about +/-6% from the theoretically estimated value based on the modified Newtonian theory, while the axi-symmetric Navier-Stokes computations overpredict the drag coefficient by about 9%. The normalized values of measured heat transfer rates at 0 degrees angle of attack are about 11% higher than the theoretically estimated values. The aerodynamic and the heat transfer data presented here are very valuable for the validation of CFD codes used for the numerical computation of How fields around hypersonic vehicles.
Resumo:
The unsteady laminar free convection flow of an incompressible electrically conducting fluid over two-dimensional and axisymmetric bodies embedded in a highly porous medium with an applied magnetic field has been studied. The unsteadiness in the flow field is caused by the variation of the wall temperature and concentration with time. The coupled nonlinear partial differential equations with three independent variables have been solved numerically using an implicit finite-difference scheme in combination with the quasilinearization technique. It is observed that the skin friction, heat transfer and mass transfer increase with the permeability parameter but decrease with the magnetic parameter. The results are strongly dependent on the variation of wall temperature and concentration with time. The skin friction and heat transfer increase or decrease as the buoyancy forces from species diffusion assist or oppose the thermal buoyancy force. However, the mass transfer is found to be higher for small values of the ratio of the buoyancy parameters than for large values
Resumo:
The shock manifold equation is a first order nonlinear partial differential equation, which describes the kinematics of a shockfront in an ideal gas with constant specific heats. However, it was found that there was more than one of these shock manifold equations, and the shock surface could be embedded in a one parameter family of surfaces, obtained as a solution of any of these shock manifold equations. Associated with each shock manifold equation is a set of characteristic curves called lsquoshock raysrsquo. This paper investigates the nature of various associated shock ray equations.
Double Diffusive Non-Darcy Free-Convection From Two-Dimensional And Axisymmetric-Bodies Of Arbitrary
Resumo:
The non-darcy mixed convection flows from heated vertical and horizontal plates in saturated porous media have been considered using boundary layer approximations. The flows are considered to be driven by multiple buoyancy forces. The similarity solutions for both vertical and horizontal plates have been obtained. The governing equations have been solved numerically using a shooting method. The heat transfer, mass transfer and skin friction are reduced due to inertial forces. Also, they increase with the buoyancy parameter for aiding flow and decrease for the opposing flow. For aiding flow, the heat and mass transfer coefficients are found to approach asymptotically the forced or free convection values as the buoyancy parameter approaches zero or infinity.
Resumo:
In this paper we have discussed limits of the validity of Whitham's characteristic rule for finding successive positions of a shock in one space dimension. We start with an example for which the exact solution is known and show that the characteristic rule gives correct result only if the state behind the shock is uniform. Then we take the gas dynamic equations in two cases: one of a shock propagating through a stratified layer and other down a nonuniform tube and derive exact equations for the evolution of the shock amplitude along a shock path. These exact results are then compared with the results obtained by the characteristic rule. The characteristic rule not only incorrectly accounts for the deviation of the state behind the shock from a uniform state but also gives a coefficient in the equation which differ significantly from the exact coefficients for a wide range of values of the shock strength.
Resumo:
A total synthesis of the bioactive tetracyclic natural product acremine G has been achieved in which a regio- and stereoselective biomimetic Diels-Alder reaction between two readily assembled building blocks, accelerated on a solid support (silica gel), forms the key step. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
An explicit representation of an analytical solution to the problem of decay of a plane shock wave of arbitrary strength is proposed. The solution satisfies the basic equations exactly. The approximation lies in the (approximate) satisfaction of two of the Rankine-Hugoniot conditions. The error incurred is shown to be very small even for strong shocks. This solution analyses the interaction of a shock of arbitrary strength with a centred simple wave overtaking it, and describes a complete history of decay with a remarkable accuracy even for strong shocks. For a weak shock, the limiting law of motion obtained from the solution is shown to be in complete agreement with the Friedrichs theory. The propagation law of the non-uniform shock wave is determined, and the equations for shock and particle paths in the (x, t)-plane are obtained. The analytic solution presented here is uniformly valid for the entire flow field behind the decaying shock wave.