44 resultados para Curriculum approaches
Resumo:
The titled approaches were effected with various 2-substituted benzoylacetic acid oximes 3 (Beckmann) and 2-substituted malonamic acids 9 (Hofmann), their carboxyl groups being masked as a 2,4,10-trioxaadamantane unit (an orthoacetate). The oxime mesylates have been rearranged with basic Al2O3 in refluxing CHCl3, and the malonamic acids with phenyliodoso acetate and KOH/MeOH. Both routes are characterized by excellent overall yields. Structure confirmation of final products was conducted with X-ray diffraction in selected cases. The final N-benzoyl and N-(methoxycarbonyl) products are alpha-amino acids with both carboxyl and amino protection; hence, they are of great interest in peptide synthesis.
Assessment of seismic hazard and liquefaction potential of Gujarat based on probabilistic approaches
Resumo:
Gujarat is one of the fastest-growing states of India with high industrial activities coming up in major cities of the state. It is indispensable to analyse seismic hazard as the region is considered to be most seismically active in stable continental region of India. The Bhuj earthquake of 2001 has caused extensive damage in terms of causality and economic loss. In the present study, the seismic hazard of Gujarat evaluated using a probabilistic approach with the use of logic tree framework that minimizes the uncertainties in hazard assessment. The peak horizontal acceleration (PHA) and spectral acceleration (Sa) values were evaluated for 10 and 2 % probability of exceedance in 50 years. Two important geotechnical effects of earthquakes, site amplification and liquefaction, are also evaluated, considering site characterization based on site classes. The liquefaction return period for the entire state of Gujarat is evaluated using a performance-based approach. The maps of PHA and PGA values prepared in this study are very useful for seismic hazard mitigation of the region in future.
Resumo:
Introduction: Advances in genomics technologies are providing a very large amount of data on genome-wide gene expression profiles, protein molecules and their interactions with other macromolecules and metabolites. Molecular interaction networks provide a useful way to capture this complex data and comprehend it. Networks are beginning to be used in drug discovery, in many steps of the modern discovery pipeline, with large-scale molecular networks being particularly useful for the understanding of the molecular basis of the disease. Areas covered: The authors discuss network approaches used for drug target discovery and lead identification in the drug discovery pipeline. By reconstructing networks of targets, drugs and drug candidates as well as gene expression profiles under normal and disease conditions, the paper illustrates how it is possible to find relationships between different diseases, find biomarkers, explore drug repurposing and study emergence of drug resistance. Furthermore, the authors also look at networks which address particular important aspects such as off-target effects, combination-targets, mechanism of drug action and drug safety. Expert opinion: The network approach represents another paradigm shift in drug discovery science. A network approach provides a fresh perspective of understanding important proteins in the context of their cellular environments, providing a rational basis for deriving useful strategies in drug design. Besides drug target identification and inferring mechanism of action, networks enable us to address new ideas that could prove to be extremely useful for new drug discovery, such as drug repositioning, drug synergy, polypharmacology and personalized medicine.
Resumo:
For one-dimensional flexible objects such as ropes, chains, hair, the assumption of constant length is realistic for large-scale 3D motion. Moreover, when the motion or disturbance at one end gradually dies down along the curve defining the one-dimensional flexible objects, the motion appears ``natural''. This paper presents a purely geometric and kinematic approach for deriving more natural and length-preserving transformations of planar and spatial curves. Techniques from variational calculus are used to determine analytical conditions and it is shown that the velocity at any point on the curve must be along the tangent at that point for preserving the length and to yield the feature of diminishing motion. It is shown that for the special case of a straight line, the analytical conditions lead to the classical tractrix curve solution. Since analytical solutions exist for a tractrix curve, the motion of a piecewise linear curve can be solved in closed-form and thus can be applied for the resolution of redundancy in hyper-redundant robots. Simulation results for several planar and spatial curves and various input motions of one end are used to illustrate the features of motion damping and eventual alignment with the perturbation vector.
Resumo:
Backgrond: Muscular dystrophies consist of a number of juvenile and adult forms of complex disorders which generally cause weakness or efficiency defects affecting skeletal muscles or, in some kinds, other types of tissues in all parts of the body are vastly affected. In previous studies, it was observed that along with muscular dystrophy, immune inflammation was caused by inflammatory cells invasion - like T lymphocyte markers (CD8+/CD4+). Inflammatory processes play a major part in muscular fibrosis in muscular dystrophy patients. Additionally, a significant decrease in amounts of two myogenic recovery factors (myogenic differentation 1 MyoD] and myogenin) in animal models was observed. The drug glatiramer acetate causes anti-inflammatory cytokines to increase and T helper (Th) cells to induce, in an as yet unknown mechanism. MyoD recovery activity in muscular cells justifies using it alongside this drug. Methods: In this study, a nanolipodendrosome carrier as a drug delivery system was designed. The purpose of the system was to maximize the delivery and efficiency of the two drug factors, MyoD and myogenin, and introduce them as novel therapeutic agents in muscular dystrophy phenotypic mice. The generation of new muscular cells was analyzed in SW1 mice. Then, immune system changes and probable side effects after injecting the nanodrug formulations were investigated. Results: The loaded lipodendrimer nanocarrier with the candidate drug, in comparison with the nandrolone control drug, caused a significant increase in muscular mass, a reduction in CD4+/CD8+ inflammation markers, and no significant toxicity was observed. The results support the hypothesis that the nanolipodendrimer containing the two candidate drugs will probably be an efficient means to ameliorate muscular degeneration, and warrants further investigation.
Resumo:
Cotton is a widely used raw material for textiles but drawbacks regarding their poor mechanical properties often limit their applications as functional materials. The present investigation involved process development for one step coating of cotton with silver nanoparticles (SNP) synthesized using Azadirachta indica and Citrus limon extract to develop functional textiles. Addition of starch to functional textiles led to efficient binding of nanoparticles to fabric and led to drastic decrease in release of silver from fabricated textiles after ten washing cycles enhancing their environment friendliness. Differential scanning calorimetry, scanning electron microscopy, FT-IR analysis and mechanical studies demonstrated efficient binding of nanoparticles to fabric through bio-based processes. The functionalized textiles developed by the bio-based methods showed significant antibacterial activity against E. coli and S. aureus (with 99% microbial reduction). Present work offers a simple procedure for coating SNP using bio-based approaches with promising applications in specialized functions.
Resumo:
The tonic is a fundamental concept in Indian art music. It is the base pitch, which an artist chooses in order to construct the melodies during a rg(a) rendition, and all accompanying instruments are tuned using the tonic pitch. Consequently, tonic identification is a fundamental task for most computational analyses of Indian art music, such as intonation analysis, melodic motif analysis and rg recognition. In this paper we review existing approaches for tonic identification in Indian art music and evaluate them on six diverse datasets for a thorough comparison and analysis. We study the performance of each method in different contexts such as the presence/absence of additional metadata, the quality of audio data, the duration of audio data, music tradition (Hindustani/Carnatic) and the gender of the singer (male/female). We show that the approaches that combine multi-pitch analysis with machine learning provide the best performance in most cases (90% identification accuracy on average), and are robust across the aforementioned contexts compared to the approaches based on expert knowledge. In addition, we also show that the performance of the latter can be improved when additional metadata is available to further constrain the problem. Finally, we present a detailed error analysis of each method, providing further insights into the advantages and limitations of the methods.
Resumo:
Two new Ru(II)-complexes RuH(Tpms)(PPh3)(2)] 1 (Tpms - (C3H3N2)(3)CSO3, tris-(pyrazolyl) methane sulfonate) and Ru(OTf)(Tpms)(PPh3)(2)] 2 (OTf = CF3SO3) have been synthesized and characterized wherein Ru-H and Ru-OTf are the key reactive centers. Reaction of 1 with HOTf results in the Ru(eta(2)-H-2)(Tpms)(PPh3)(2)]OTf] complex 3, whereas reaction of 1 with Me3SiOTf affords the dihydrogen complex 3 and complex 1 through an unobserved sigma-silane intermediate. In addition, an attempt to characterize the sigma methane complex via reaction of complex 1 with CH3OTf yields complex 2 and free methane. On the other hand, reaction of Ru(OTf)(Tpms)(PPh3)(2)] 2 with H-2 and PhMe2SiH at low temperature resulted in sigma-H-2, 3 and a probable sigma-silane complexes, respectively. However, no sigma-methane complex was observed for the reaction of complex 2 with methane even at low temperature. (C) 2014 Elsevier B. V. All rights reserved.
Resumo:
Head pose classification from surveillance images acquired with distant, large field-of-view cameras is difficult as faces are captured at low-resolution and have a blurred appearance. Domain adaptation approaches are useful for transferring knowledge from the training (source) to the test (target) data when they have different attributes, minimizing target data labeling efforts in the process. This paper examines the use of transfer learning for efficient multi-view head pose classification with minimal target training data under three challenging situations: (i) where the range of head poses in the source and target images is different, (ii) where source images capture a stationary person while target images capture a moving person whose facial appearance varies under motion due to changing perspective, scale and (iii) a combination of (i) and (ii). On the whole, the presented methods represent novel transfer learning solutions employed in the context of multi-view head pose classification. We demonstrate that the proposed solutions considerably outperform the state-of-the-art through extensive experimental validation. Finally, the DPOSE dataset compiled for benchmarking head pose classification performance with moving persons, and to aid behavioral understanding applications is presented in this work.
Resumo:
Catalytic asymmetric desymmetrization represents an excellent strategy for accessing highly functionalized chiral building blocks. However, the application of desymmetrization for the synthesis of enantio-enriched cyclopentane derivatives remained limited, when compared to chiral cyclohexanes. We have recently developed a desymmetrization protocol for prochiral 2,2-disubstituted cyclopentene-1,3-diones by direct catalytic asymmetric vinylogous nucleophilic addition of deconjugated butenolides. In this perspective, we give an overview of asymmetric desymmetrization reactions leading to enantioenriched cyclopentanes and their derivatives. The focus is kept confined to the diverse nature of reactions used for this purpose. A brief discussion on the potential future directions is also provided.
Resumo:
The availability of the genome sequence of Mycobacterium tuberculosis H37Rv has encouraged determination of large numbers of protein structures and detailed definition of the biological information encoded therein; yet, the functions of many proteins in M. tuberculosis remain unknown. The emergence of multidrug resistant strains makes it a priority to exploit recent advances in homology recognition and structure prediction to re-analyse its gene products. Here we report the structural and functional characterization of gene products encoded in the M. tuberculosis genome, with the help of sensitive profile-based remote homology search and fold recognition algorithms resulting in an enhanced annotation of the proteome where 95% of the M. tuberculosis proteins were identified wholly or partly with information on structure or function. New information includes association of 244 proteins with 205 domain families and a separate set of new association of folds to 64 proteins. Extending structural information across uncharacterized protein families represented in the M. tuberculosis proteome, by determining superfamily relationships between families of known and unknown structures, has contributed to an enhancement in the knowledge of structural content. In retrospect, such superfamily relationships have facilitated recognition of probable structure and/or function for several uncharacterized protein families, eventually aiding recognition of probable functions for homologous proteins corresponding to such families. Gene products unique to mycobacteria for which no functions could be identified are 183. Of these 18 were determined to be M. tuberculosis specific. Such pathogen-specific proteins are speculated to harbour virulence factors required for pathogenesis. A re-annotated proteome of M. tuberculosis, with greater completeness of annotated proteins and domain assigned regions, provides a valuable basis for experimental endeavours designed to obtain a better understanding of pathogenesis and to accelerate the process of drug target discovery. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The inversion of canopy reflectance models is widely used for the retrieval of vegetation properties from remote sensing. This study evaluates the retrieval of soybean biophysical variables of leaf area index, leaf chlorophyll content, canopy chlorophyll content, and equivalent leaf water thickness from proximal reflectance data integrated broadbands corresponding to moderate resolution imaging spectroradiometer, thematic mapper, and linear imaging self scanning sensors through inversion of the canopy radiative transfer model, PROSAIL. Three different inversion approaches namely the look-up table, genetic algorithm, and artificial neural network were used and performances were evaluated. Application of the genetic algorithm for crop parameter retrieval is a new attempt among the variety of optimization problems in remote sensing which have been successfully demonstrated in the present study. Its performance was as good as that of the look-up table approach and the artificial neural network was a poor performer. The general order of estimation accuracy for para-meters irrespective of inversion approaches was leaf area index > canopy chlorophyll content > leaf chlorophyll content > equivalent leaf water thickness. Performance of inversion was comparable for broadband reflectances of all three sensors in the optical region with insignificant differences in estimation accuracy among them.