35 resultados para Cover interpretation
Resumo:
We propose a new approach for producing precise constrained slices of programs in a language such as C. We build upon a previous approach for this problem, which is based on term-rewriting, which primarily targets loop-free fragments and is fully precise in this setting. We incorporate abstract interpretation into term-rewriting, using a given arbitrary abstract lattice, resulting in a novel technique for slicing loops whose precision is linked to the power of the given abstract lattice. We address pointers in a first-class manner, including when they are used within loops to traverse and update recursive data structures. Finally, we illustrate the comparative precision of our slices over those of previous approaches using representative examples.
Resumo:
We apply the objective method of Aldous to the problem of finding the minimum-cost edge cover of the complete graph with random independent and identically distributed edge costs. The limit, as the number of vertices goes to infinity, of the expected minimum cost for this problem is known via a combinatorial approach of Hessler and Wastlund. We provide a proof of this result using the machinery of the objective method and local weak convergence, which was used to prove the (2) limit of the random assignment problem. A proof via the objective method is useful because it provides us with more information on the nature of the edge's incident on a typical root in the minimum-cost edge cover. We further show that a belief propagation algorithm converges asymptotically to the optimal solution. This can be applied in a computational linguistics problem of semantic projection. The belief propagation algorithm yields a near optimal solution with lesser complexity than the known best algorithms designed for optimality in worst-case settings.
Resumo:
The problem of finding an optimal vertex cover in a graph is a classic NP-complete problem, and is a special case of the hitting set question. On the other hand, the hitting set problem, when asked in the context of induced geometric objects, often turns out to be exactly the vertex cover problem on restricted classes of graphs. In this work we explore a particular instance of such a phenomenon. We consider the problem of hitting all axis-parallel slabs induced by a point set P, and show that it is equivalent to the problem of finding a vertex cover on a graph whose edge set is the union of two Hamiltonian Paths. We show the latter problem to be NP-complete, and also give an algorithm to find a vertex cover of size at most k, on graphs of maximum degree four, whose running time is 1.2637(k) n(O(1)).
Resumo:
Brain signals often show fluctuations in particular frequency bands, which are highly conserved across species and are associated with specific behavioural states. Such rhythmic patterns can be captured in the local field potential (LFP), which is obtained by low-pass filtering the extracellular signal recorded from microelectrodes. However, LFP also captures other neural processes that are associated with spikes, such as synaptic events preceding a spike, low-frequency component of the action potential (spike bleed-through'') and spike afterhyperpolarization, which pose difficulties in the estimation of the amplitude and phase of the rhythm with respect to spikes. Here we discuss these issues and different techniques that have been used to dissociate the rhythm from other neural events in the LFP.
Resumo:
A real-space high order finite difference method is used to analyze the effect of spherical domain size on the Hartree-Fock (and density functional theory) virtual eigenstates. We show the domain size dependence of both positive and negative virtual eigenvalues of the Hartree-Fock equations for small molecules. We demonstrate that positive states behave like a particle in spherical well and show how they approach zero. For the negative eigenstates, we show that large domains are needed to get the correct eigenvalues. We compare our results to those of Gaussian basis sets and draw some conclusions for real-space, basis-sets, and plane-waves calculations. (C) 2016 AIP Publishing LLC.