33 resultados para Corner Operators
Resumo:
Precise experimental implementation of unitary operators is one of the most important tasks for quantum information processing. Numerical optimization techniques are widely used to find optimized control fields to realize a desired unitary operator. However, finding high-fidelity control pulses to realize an arbitrary unitary operator in larger spin systems is still a difficult task. In this work, we demonstrate that a combination of the GRAPE algorithm, which is a numerical pulse optimization technique, and a unitary operator decomposition algorithm Ajoy et al., Phys. Rev. A 85, 030303 (2012)] can realize unitary operators with high experimental fidelity. This is illustrated by simulating the mirror-inversion propagator of an XY spin chain in a five-spin dipolar coupled nuclear spin system. Further, this simulation has been used to demonstrate the transfer of entangled states from one end of the spin chain to the other end.
Resumo:
We affirmatively answer a question due to S. Bocherer concerning the feasibility of removing one differential operator from the standard collection of m + 1 of them used to embed the space of Jacobi forms of weight 2 and index m into several pieces of elliptic modular forms. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Let F and G be two bounded operators on two Hilbert spaces. Let their numerical radii be no greater than one. This note investigates when there is a Gamma-contraction (S, P) such that F is the fundamental operator of (S, P) and G is the fundamental operator of (S*, P*). Theorem 1 puts a necessary condition on F and G for them to be the fundamental operators of (S, P) and (S*, P*) respectively. Theorem 2 shows that this necessary condition is also sufficient provided we restrict our attention to a certain special case. The general case is investigated in Theorem 3. Some of the results obtained for Gamma-contractions are then applied to tetrablock contractions to figure out when two pairs (F1, F2) and (G(1), G(2)) acting on two Hilbert spaces can be fundamental operators of a tetrablock contraction (A, B, P) and its adjoint (A*, B*, P*) respectively. This is the content of Theorem 3. (C) 2015 Elsevier Inc. All rights reserved.